hbsqlit2

hbsqlit2

Top  Previous  Next

c:\harbour\contrib\hbsqlit2
attach.c
TypeFunctionSourceLine
VOIDsqliteAttach(Parse *pParse, Token *pFilename, Token *pDbname, Token *pKey)
void sqliteAttach(Parse *pParse, Token *pFilename, Token *pDbname, Token *pKey){
  Db *aNew;
  int rc, i;
  char *zFile, *zName;
  sqlite *db;
  Vdbe *v;

  v = sqliteGetVdbe(pParse);
  sqliteVdbeAddOp(v, OP_Halt, 0, 0);
  if( pParse->explain ) return;
  db = pParse->db;
  if( db->file_format<4 ){
    sqliteErrorMsg(pParse, "cannot attach auxiliary databases to an "
       "older format master database", 0);
    pParse->rc = SQLITE_ERROR;
    return;
  }
  if( db->nDb>=MAX_ATTACHED+2 ){
    sqliteErrorMsg(pParse, "too many attached databases - max %d", 
       MAX_ATTACHED);
    pParse->rc = SQLITE_ERROR;
    return;
  }

  zFile = 0;
  sqliteSetNString(&zFile, pFilename->z, pFilename->n, 0);
  if( zFile==0 ) return;
  sqliteDequote(zFile);
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqliteAuthCheck(pParse, SQLITE_ATTACH, zFile, 0, 0)!=SQLITE_OK ){
    sqliteFree(zFile);
    return;
  }
#endif /* SQLITE_OMIT_AUTHORIZATION */

  zName = 0;
  sqliteSetNString(&zName, pDbname->z, pDbname->n, 0);
  if( zName==0 ) return;
  sqliteDequote(zName);
  for(i=0; inDb; i++){
    if( db->aDb[i].zName && sqliteStrICmp(db->aDb[i].zName, zName)==0 ){
      sqliteErrorMsg(pParse, "database %z is already in use", zName);
      pParse->rc = SQLITE_ERROR;
      sqliteFree(zFile);
      return;
    }
  }

  if( db->aDb==db->aDbStatic ){
    aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
    if( aNew==0 ) return;
    memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
  }else{
    aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
    if( aNew==0 ) return;
  }
  db->aDb = aNew;
  aNew = &db->aDb[db->nDb++];
  memset(aNew, 0, sizeof(*aNew));
  sqliteHashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0);
  sqliteHashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0);
  sqliteHashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0);
  sqliteHashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1);
  aNew->zName = zName;
  rc = sqliteBtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
  if( rc ){
    sqliteErrorMsg(pParse, "unable to open database: %s", zFile);
  }
#if SQLITE_HAS_CODEC
  {
    extern int sqliteCodecAttach(sqlite*, int, void*, int);
    char *zKey = 0;
    int nKey;
    if( pKey && pKey->z && pKey->n ){
      sqliteSetNString(&zKey, pKey->z, pKey->n, 0);
      sqliteDequote(zKey);
      nKey = strlen(zKey);
    }else{
      zKey = 0;
      nKey = 0;
    }
    sqliteCodecAttach(db, db->nDb-1, zKey, nKey);
  }
#endif
  sqliteFree(zFile);
  db->flags &= ~SQLITE_Initialized;
  if( pParse->nErr ) return;
  if( rc==SQLITE_OK ){
    rc = sqliteInit(pParse->db, &pParse->zErrMsg);
  }
  if( rc ){
    int i = db->nDb - 1;
    assert( i>=2 );
    if( db->aDb[i].pBt ){
      sqliteBtreeClose(db->aDb[i].pBt);
      db->aDb[i].pBt = 0;
    }
    sqliteResetInternalSchema(db, 0);
    pParse->nErr++;
    pParse->rc = SQLITE_ERROR;
  }
}
attach.c18
VOIDsqliteDetach(Parse *pParse, Token *pDbname)
void sqliteDetach(Parse *pParse, Token *pDbname){
  int i;
  sqlite *db;
  Vdbe *v;
  Db *pDb;

  v = sqliteGetVdbe(pParse);
  sqliteVdbeAddOp(v, OP_Halt, 0, 0);
  if( pParse->explain ) return;
  db = pParse->db;
  for(i=0; inDb; i++){
    pDb = &db->aDb[i];
    if( pDb->pBt==0 || pDb->zName==0 ) continue;
    if( strlen(pDb->zName)!=pDbname->n ) continue;
    if( sqliteStrNICmp(pDb->zName, pDbname->z, pDbname->n)==0 ) break;
  }
  if( i>=db->nDb ){
    sqliteErrorMsg(pParse, "no such database: %T", pDbname);
    return;
  }
  if( i<2 ){
    sqliteErrorMsg(pParse, "cannot detach database %T", pDbname);
    return;
  }
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqliteAuthCheck(pParse,SQLITE_DETACH,db->aDb[i].zName,0,0)!=SQLITE_OK ){
    return;
  }
#endif /* SQLITE_OMIT_AUTHORIZATION */
  sqliteBtreeClose(pDb->pBt);
  pDb->pBt = 0;
  sqliteFree(pDb->zName);
  sqliteResetInternalSchema(db, i);
  if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
  db->nDb--;
  if( inDb ){
    db->aDb[i] = db->aDb[db->nDb];
    memset(&db->aDb[db->nDb], 0, sizeof(db->aDb[0]));
    sqliteResetInternalSchema(db, i);
  }
}
attach.c129
INTsqliteFixInit( DbFixer *pFix, Parse *pParse, int iDb, const char *zType, const Token *pName )
int sqliteFixInit(
  DbFixer *pFix,      /* The fixer to be initialized */
  Parse *pParse,      /* Error messages will be written here */
  int iDb,            /* This is the database that must must be used */
  const char *zType,  /* "view", "trigger", or "index" */
  const Token *pName  /* Name of the view, trigger, or index */
){
  sqlite *db;

  if( iDb<0 || iDb==1 ) return 0;
  db = pParse->db;
  assert( db->nDb>iDb );
  pFix->pParse = pParse;
  pFix->zDb = db->aDb[iDb].zName;
  pFix->zType = zType;
  pFix->pName = pName;
  return 1;
}
attach.c178
INTsqliteFixSrcList( DbFixer *pFix, SrcList *pList )
int sqliteFixSrcList(
  DbFixer *pFix,       /* Context of the fixation */
  SrcList *pList       /* The Source list to check and modify */
){
  int i;
  const char *zDb;

  if( pList==0 ) return 0;
  zDb = pFix->zDb;
  for(i=0; inSrc; i++){
    if( pList->a[i].zDatabase==0 ){
      pList->a[i].zDatabase = sqliteStrDup(zDb);
    }else if( sqliteStrICmp(pList->a[i].zDatabase,zDb)!=0 ){
      sqliteErrorMsg(pFix->pParse,
         "%s %z cannot reference objects in database %s",
         pFix->zType, sqliteStrNDup(pFix->pName->z, pFix->pName->n),
         pList->a[i].zDatabase);
      return 1;
    }
    if( sqliteFixSelect(pFix, pList->a[i].pSelect) ) return 1;
    if( sqliteFixExpr(pFix, pList->a[i].pOn) ) return 1;
  }
  return 0;
}
attach.c204
INTsqliteFixSelect( DbFixer *pFix, Select *pSelect )
int sqliteFixSelect(
  DbFixer *pFix,       /* Context of the fixation */
  Select *pSelect      /* The SELECT statement to be fixed to one database */
){
  while( pSelect ){
    if( sqliteFixExprList(pFix, pSelect->pEList) ){
      return 1;
    }
    if( sqliteFixSrcList(pFix, pSelect->pSrc) ){
      return 1;
    }
    if( sqliteFixExpr(pFix, pSelect->pWhere) ){
      return 1;
    }
    if( sqliteFixExpr(pFix, pSelect->pHaving) ){
      return 1;
    }
    pSelect = pSelect->pPrior;
  }
  return 0;
}
attach.c242
INTsqliteFixExpr( DbFixer *pFix, Expr *pExpr )
int sqliteFixExpr(
  DbFixer *pFix,     /* Context of the fixation */
  Expr *pExpr        /* The expression to be fixed to one database */
){
  while( pExpr ){
    if( sqliteFixSelect(pFix, pExpr->pSelect) ){
      return 1;
    }
    if( sqliteFixExprList(pFix, pExpr->pList) ){
      return 1;
    }
    if( sqliteFixExpr(pFix, pExpr->pRight) ){
      return 1;
    }
    pExpr = pExpr->pLeft;
  }
  return 0;
}
attach.c263
INTsqliteFixExprList( DbFixer *pFix, ExprList *pList )
int sqliteFixExprList(
  DbFixer *pFix,     /* Context of the fixation */
  ExprList *pList    /* The expression to be fixed to one database */
){
  int i;
  if( pList==0 ) return 0;
  for(i=0; inExpr; i++){
    if( sqliteFixExpr(pFix, pList->a[i].pExpr) ){
      return 1;
    }
  }
  return 0;
}
attach.c281
INTsqliteFixTriggerStep( DbFixer *pFix, TriggerStep *pStep )
int sqliteFixTriggerStep(
  DbFixer *pFix,     /* Context of the fixation */
  TriggerStep *pStep /* The trigger step be fixed to one database */
){
  while( pStep ){
    if( sqliteFixSelect(pFix, pStep->pSelect) ){
      return 1;
    }
    if( sqliteFixExpr(pFix, pStep->pWhere) ){
      return 1;
    }
    if( sqliteFixExprList(pFix, pStep->pExprList) ){
      return 1;
    }
    pStep = pStep->pNext;
  }
  return 0;
}
attach.c294
auth.c
TypeFunctionSourceLine
INT SQLITE_SET_AUTHORIZER( SQLITE *DB, INT (*XAUTH(void*,int,const char*,const char*,const char*,const char*), void *pArg )
int sqlite_set_authorizer(
  sqlite *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
  db->xAuth = xAuth;
  db->pAuthArg = pArg;
  return SQLITE_OK;
}
auth.c27
STATIC VOIDsqliteAuthBadReturnCode(Parse *pParse, int rc)
static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
  sqliteErrorMsg(pParse, "illegal return value (%d) from the "
    "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
    "or SQLITE_DENY", rc);
  pParse->rc = SQLITE_MISUSE;
}
auth.c83
VOIDsqliteAuthRead( Parse *pParse, Expr *pExpr, SrcList *pTabList )
void sqliteAuthRead(
  Parse *pParse,        /* The parser context */
  Expr *pExpr,          /* The expression to check authorization on */
  SrcList *pTabList     /* All table that pExpr might refer to */
){
  sqlite *db = pParse->db;
  int rc;
  Table *pTab;          /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  const char *zDBase;   /* Name of database being accessed */
  TriggerStack *pStack; /* The stack of current triggers */

  if( db->xAuth==0 ) return;
  assert( pExpr->op==TK_COLUMN );
  for(iSrc=0; iSrcnSrc; iSrc++){
    if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
  }
  if( iSrc>=0 && iSrcnSrc ){
    pTab = pTabList->a[iSrc].pTab;
  }else if( (pStack = pParse->trigStack)!=0 ){
    /* This must be an attempt to read the NEW or OLD pseudo-tables
    ** of a trigger.
    */
    assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
    pTab = pStack->pTab;
  }else{
    return;
  }
  if( pTab==0 ) return;
  if( pExpr->iColumn>=0 ){
    assert( pExpr->iColumnnCol );
    zCol = pTab->aCol[pExpr->iColumn].zName;
  }else if( pTab->iPKey>=0 ){
    assert( pTab->iPKeynCol );
    zCol = pTab->aCol[pTab->iPKey].zName;
  }else{
    zCol = "ROWID";
  }
  assert( pExpr->iDbnDb );
  zDBase = db->aDb[pExpr->iDb].zName;
  rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, 
                 pParse->zAuthContext);
  if( rc==SQLITE_IGNORE ){
    pExpr->op = TK_NULL;
  }else if( rc==SQLITE_DENY ){
    if( db->nDb>2 || pExpr->iDb!=0 ){
      sqliteErrorMsg(pParse, "access to %s.%s.%s is prohibited", 
         zDBase, pTab->zName, zCol);
    }else{
      sqliteErrorMsg(pParse, "access to %s.%s is prohibited", pTab->zName,zCol);
    }
    pParse->rc = SQLITE_AUTH;
  }else if( rc!=SQLITE_OK ){
    sqliteAuthBadReturnCode(pParse, rc);
  }
}
auth.c94
INTsqliteAuthCheck( Parse *pParse, int code, const char *zArg1, const char *zArg2, const char *zArg3 )
int sqliteAuthCheck(
  Parse *pParse,
  int code,
  const char *zArg1,
  const char *zArg2,
  const char *zArg3
){
  sqlite *db = pParse->db;
  int rc;

  if( db->init.busy || db->xAuth==0 ){
    return SQLITE_OK;
  }
  rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
  if( rc==SQLITE_DENY ){
    sqliteErrorMsg(pParse, "not authorized");
    pParse->rc = SQLITE_AUTH;
  }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
    rc = SQLITE_DENY;
    sqliteAuthBadReturnCode(pParse, rc);
  }
  return rc;
}
auth.c161
VOIDsqliteAuthContextPush( Parse *pParse, AuthContext *pContext, const char *zContext )
void sqliteAuthContextPush(
  Parse *pParse,
  AuthContext *pContext, 
  const char *zContext
){
  pContext->pParse = pParse;
  if( pParse ){
    pContext->zAuthContext = pParse->zAuthContext;
    pParse->zAuthContext = zContext;
  }
}
auth.c191
VOIDsqliteAuthContextPop(AuthContext *pContext)
void sqliteAuthContextPop(AuthContext *pContext){
  if( pContext->pParse ){
    pContext->pParse->zAuthContext = pContext->zAuthContext;
    pContext->pParse = 0;
  }
}
auth.c208
btree.c
TypeFunctionSourceLine
U16swab16(u16 x)
u16 swab16(u16 x){
  return ((x & 0xff)<<8) | ((x>>8)&0xff);
}
btree.c387
U32swab32(u32 x)
u32 swab32(u32 x){
  return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
         ((x>>8) & 0xff00) | ((x>>24)&0xff);
}
btree.c393
STATIC INTcellSize(Btree *pBt, Cell *pCell)
static int cellSize(Btree *pBt, Cell *pCell){
  int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
  if( n>MX_LOCAL_PAYLOAD ){
    n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
  }else{
    n = ROUNDUP(n);
  }
  n += sizeof(CellHdr);
  return n;
}
btree.c398
STATIC VOIDdefragmentPage(Btree *pBt, MemPage *pPage)
static void defragmentPage(Btree *pBt, MemPage *pPage){
  int pc, i, n;
  FreeBlk *pFBlk;
  char newPage[SQLITE_USABLE_SIZE];

  assert( sqlitepager_iswriteable(pPage) );
  assert( pPage->isInit );
  pc = sizeof(PageHdr);
  pPage->u.hdr.firstCell = SWAB16(pBt, pc);
  memcpy(newPage, pPage->u.aDisk, pc);
  for(i=0; inCell; i++){
    Cell *pCell = pPage->apCell[i];

    /* This routine should never be called on an overfull page.  The
    ** following asserts verify that constraint. */
    assert( Addr(pCell) > Addr(pPage) );
    assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );

    n = cellSize(pBt, pCell);
    pCell->h.iNext = SWAB16(pBt, pc + n);
    memcpy(&newPage[pc], pCell, n);
    pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
    pc += n;
  }
  assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
  memcpy(pPage->u.aDisk, newPage, pc);
  if( pPage->nCell>0 ){
    pPage->apCell[pPage->nCell-1]->h.iNext = 0;
  }
  pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
  pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
  pFBlk->iNext = 0;
  pPage->u.hdr.firstFree = SWAB16(pBt, pc);
  memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
}
btree.c416
STATIC INTallocateSpace(Btree *pBt, MemPage *pPage, int nByte)
static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
  FreeBlk *p;
  u16 *pIdx;
  int start;
  int iSize;
#ifndef NDEBUG
  int cnt = 0;
#endif

  assert( sqlitepager_iswriteable(pPage) );
  assert( nByte==ROUNDUP(nByte) );
  assert( pPage->isInit );
  if( pPage->nFreeisOverfull ) return 0;
  pIdx = &pPage->u.hdr.firstFree;
  p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
  while( (iSize = SWAB16(pBt, p->iSize))iNext==0 ){
      defragmentPage(pBt, pPage);
      pIdx = &pPage->u.hdr.firstFree;
    }else{
      pIdx = &p->iNext;
    }
    p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
  }
  if( iSize==nByte ){
    start = SWAB16(pBt, *pIdx);
    *pIdx = p->iNext;
  }else{
    FreeBlk *pNew;
    start = SWAB16(pBt, *pIdx);
    pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
    pNew->iNext = p->iNext;
    pNew->iSize = SWAB16(pBt, iSize - nByte);
    *pIdx = SWAB16(pBt, start + nByte);
  }
  pPage->nFree -= nByte;
  return start;
}
btree.c457
STATIC VOIDfreeSpace(Btree *pBt, MemPage *pPage, int start, int size)
static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
  int end = start + size;
  u16 *pIdx, idx;
  FreeBlk *pFBlk;
  FreeBlk *pNew;
  FreeBlk *pNext;
  int iSize;

  assert( sqlitepager_iswriteable(pPage) );
  assert( size == ROUNDUP(size) );
  assert( start == ROUNDUP(start) );
  assert( pPage->isInit );
  pIdx = &pPage->u.hdr.firstFree;
  idx = SWAB16(pBt, *pIdx);
  while( idx!=0 && idxu.aDisk[idx];
    iSize = SWAB16(pBt, pFBlk->iSize);
    if( idx + iSize == start ){
      pFBlk->iSize = SWAB16(pBt, iSize + size);
      if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
        pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
        if( pBt->needSwab ){
          pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
        }else{
          pFBlk->iSize += pNext->iSize;
        }
        pFBlk->iNext = pNext->iNext;
      }
      pPage->nFree += size;
      return;
    }
    pIdx = &pFBlk->iNext;
    idx = SWAB16(pBt, *pIdx);
  }
  pNew = (FreeBlk*)&pPage->u.aDisk[start];
  if( idx != end ){
    pNew->iSize = SWAB16(pBt, size);
    pNew->iNext = SWAB16(pBt, idx);
  }else{
    pNext = (FreeBlk*)&pPage->u.aDisk[idx];
    pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
    pNew->iNext = pNext->iNext;
  }
  *pIdx = SWAB16(pBt, start);
  pPage->nFree += size;
}
btree.c510
STATIC INTinitPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent)
static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
  int idx;           /* An index into pPage->u.aDisk[] */
  Cell *pCell;       /* A pointer to a Cell in pPage->u.aDisk[] */
  FreeBlk *pFBlk;    /* A pointer to a free block in pPage->u.aDisk[] */
  int sz;            /* The size of a Cell in bytes */
  int freeSpace;     /* Amount of free space on the page */

  if( pPage->pParent ){
    assert( pPage->pParent==pParent );
    return SQLITE_OK;
  }
  if( pParent ){
    pPage->pParent = pParent;
    sqlitepager_ref(pParent);
  }
  if( pPage->isInit ) return SQLITE_OK;
  pPage->isInit = 1;
  pPage->nCell = 0;
  freeSpace = USABLE_SPACE;
  idx = SWAB16(pBt, pPage->u.hdr.firstCell);
  while( idx!=0 ){
    if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
    if( idxu.aDisk[idx];
    sz = cellSize(pBt, pCell);
    if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
    freeSpace -= sz;
    pPage->apCell[pPage->nCell++] = pCell;
    idx = SWAB16(pBt, pCell->h.iNext);
  }
  pPage->nFree = 0;
  idx = SWAB16(pBt, pPage->u.hdr.firstFree);
  while( idx!=0 ){
    int iNext;
    if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
    if( idxu.aDisk[idx];
    pPage->nFree += SWAB16(pBt, pFBlk->iSize);
    iNext = SWAB16(pBt, pFBlk->iNext);
    if( iNext>0 && iNext <= idx ) goto page_format_error;
    idx = iNext;
  }
  if( pPage->nCell==0 && pPage->nFree==0 ){
    /* As a special case, an uninitialized root page appears to be
    ** an empty database */
    return SQLITE_OK;
  }
  if( pPage->nFree!=freeSpace ) goto page_format_error;
  return SQLITE_OK;

page_format_error:
  return SQLITE_CORRUPT;
}
btree.c566
STATIC VOIDzeroPage(Btree *pBt, MemPage *pPage)
static void zeroPage(Btree *pBt, MemPage *pPage){
  PageHdr *pHdr;
  FreeBlk *pFBlk;
  assert( sqlitepager_iswriteable(pPage) );
  memset(pPage, 0, SQLITE_USABLE_SIZE);
  pHdr = &pPage->u.hdr;
  pHdr->firstCell = 0;
  pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
  pFBlk = (FreeBlk*)&pHdr[1];
  pFBlk->iNext = 0;
  pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
  pFBlk->iSize = SWAB16(pBt, pPage->nFree);
  pPage->nCell = 0;
  pPage->isOverfull = 0;
}
btree.c635
STATIC VOIDpageDestructor(void *pData)
static void pageDestructor(void *pData){
  MemPage *pPage = (MemPage*)pData;
  if( pPage->pParent ){
    MemPage *pParent = pPage->pParent;
    pPage->pParent = 0;
    sqlitepager_unref(pParent);
  }
}
btree.c655
INTsqliteBtreeOpen( const char *zFilename, int omitJournal, int nCache, Btree **ppBtree )
int sqliteBtreeOpen(
  const char *zFilename,    /* Name of the file containing the BTree database */
  int omitJournal,          /* if TRUE then do not journal this file */
  int nCache,               /* How many pages in the page cache */
  Btree **ppBtree           /* Pointer to new Btree object written here */
){
  Btree *pBt;
  int rc;

  /*
  ** The following asserts make sure that structures used by the btree are
  ** the right size.  This is to guard against size changes that result
  ** when compiling on a different architecture.
  */
  assert( sizeof(u32)==4 );
  assert( sizeof(u16)==2 );
  assert( sizeof(Pgno)==4 );
  assert( sizeof(PageHdr)==8 );
  assert( sizeof(CellHdr)==12 );
  assert( sizeof(FreeBlk)==4 );
  assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
  assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
  assert( sizeof(ptr)==sizeof(char*) );
  assert( sizeof(uptr)==sizeof(ptr) );

  pBt = sqliteMalloc( sizeof(*pBt) );
  if( pBt==0 ){
    *ppBtree = 0;
    return SQLITE_NOMEM;
  }
  if( nCache<10 ) nCache = 10;
  rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
                        !omitJournal);
  if( rc!=SQLITE_OK ){
    if( pBt->pPager ) sqlitepager_close(pBt->pPager);
    sqliteFree(pBt);
    *ppBtree = 0;
    return rc;
  }
  sqlitepager_set_destructor(pBt->pPager, pageDestructor);
  pBt->pCursor = 0;
  pBt->page1 = 0;
  pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
  pBt->pOps = &sqliteBtreeOps;
  *ppBtree = pBt;
  return SQLITE_OK;
}
btree.c669
STATIC INTfileBtreeClose(Btree *pBt)
static int fileBtreeClose(Btree *pBt){
  while( pBt->pCursor ){
    fileBtreeCloseCursor(pBt->pCursor);
  }
  sqlitepager_close(pBt->pPager);
  sqliteFree(pBt);
  return SQLITE_OK;
}
btree.c728
STATIC INTfileBtreeSetCacheSize(Btree *pBt, int mxPage)
static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
  sqlitepager_set_cachesize(pBt->pPager, mxPage);
  return SQLITE_OK;
}
btree.c740
STATIC INTfileBtreeSetSafetyLevel(Btree *pBt, int level)
static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
  sqlitepager_set_safety_level(pBt->pPager, level);
  return SQLITE_OK;
}
btree.c760
STATIC INTlockBtree(Btree *pBt)
static int lockBtree(Btree *pBt){
  int rc;
  if( pBt->page1 ) return SQLITE_OK;
  rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  if( sqlitepager_pagecount(pBt->pPager)>0 ){
    PageOne *pP1 = pBt->page1;
    if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
          (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
      rc = SQLITE_NOTADB;
      goto page1_init_failed;
    }
    pBt->needSwab = pP1->iMagic!=MAGIC;
  }
  return rc;

page1_init_failed:
  sqlitepager_unref(pBt->page1);
  pBt->page1 = 0;
  return rc;
}
btree.c773
STATIC VOIDunlockBtreeIfUnused(Btree *pBt)
static void unlockBtreeIfUnused(Btree *pBt){
  if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
    sqlitepager_unref(pBt->page1);
    pBt->page1 = 0;
    pBt->inTrans = 0;
    pBt->inCkpt = 0;
  }
}
btree.c809
STATIC INTnewDatabase(Btree *pBt)
static int newDatabase(Btree *pBt){
  MemPage *pRoot;
  PageOne *pP1;
  int rc;
  if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
  pP1 = pBt->page1;
  rc = sqlitepager_write(pBt->page1);
  if( rc ) return rc;
  rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
  if( rc ) return rc;
  rc = sqlitepager_write(pRoot);
  if( rc ){
    sqlitepager_unref(pRoot);
    return rc;
  }
  strcpy(pP1->zMagic, zMagicHeader);
  if( btree_native_byte_order ){
    pP1->iMagic = MAGIC;
    pBt->needSwab = 0;
  }else{
    pP1->iMagic = swab32(MAGIC);
    pBt->needSwab = 1;
  }
  zeroPage(pBt, pRoot);
  sqlitepager_unref(pRoot);
  return SQLITE_OK;
}
btree.c828
STATIC INTfileBtreeBeginTrans(Btree *pBt)
static int fileBtreeBeginTrans(Btree *pBt){
  int rc;
  if( pBt->inTrans ) return SQLITE_ERROR;
  if( pBt->readOnly ) return SQLITE_READONLY;
  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }
  rc = sqlitepager_begin(pBt->page1);
  if( rc==SQLITE_OK ){
    rc = newDatabase(pBt);
  }
  if( rc==SQLITE_OK ){
    pBt->inTrans = 1;
    pBt->inCkpt = 0;
  }else{
    unlockBtreeIfUnused(pBt);
  }
  return rc;
}
btree.c860
STATIC INTfileBtreeCommit(Btree *pBt)
static int fileBtreeCommit(Btree *pBt){
  int rc;
  rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
  pBt->inTrans = 0;
  pBt->inCkpt = 0;
  unlockBtreeIfUnused(pBt);
  return rc;
}
btree.c898
STATIC INTfileBtreeRollback(Btree *pBt)
static int fileBtreeRollback(Btree *pBt){
  int rc;
  BtCursor *pCur;
  if( pBt->inTrans==0 ) return SQLITE_OK;
  pBt->inTrans = 0;
  pBt->inCkpt = 0;
  rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pPage && pCur->pPage->isInit==0 ){
      sqlitepager_unref(pCur->pPage);
      pCur->pPage = 0;
    }
  }
  unlockBtreeIfUnused(pBt);
  return rc;
}
btree.c913
STATIC INTfileBtreeBeginCkpt(Btree *pBt)
static int fileBtreeBeginCkpt(Btree *pBt){
  int rc;
  if( !pBt->inTrans || pBt->inCkpt ){
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
  pBt->inCkpt = 1;
  return rc;
}
btree.c939
STATIC INTfileBtreeCommitCkpt(Btree *pBt)
static int fileBtreeCommitCkpt(Btree *pBt){
  int rc;
  if( pBt->inCkpt && !pBt->readOnly ){
    rc = sqlitepager_ckpt_commit(pBt->pPager);
  }else{
    rc = SQLITE_OK;
  }
  pBt->inCkpt = 0;
  return rc;
}
btree.c960
STATIC INTfileBtreeRollbackCkpt(Btree *pBt)
static int fileBtreeRollbackCkpt(Btree *pBt){
  int rc;
  BtCursor *pCur;
  if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
  rc = sqlitepager_ckpt_rollback(pBt->pPager);
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pPage && pCur->pPage->isInit==0 ){
      sqlitepager_unref(pCur->pPage);
      pCur->pPage = 0;
    }
  }
  pBt->inCkpt = 0;
  return rc;
}
btree.c975
STATIC INTfileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur)
static 
int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
  int rc;
  BtCursor *pCur, *pRing;

  if( pBt->readOnly && wrFlag ){
    *ppCur = 0;
    return SQLITE_READONLY;
  }
  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ){
      *ppCur = 0;
      return rc;
    }
  }
  pCur = sqliteMalloc( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }
  pCur->pgnoRoot = (Pgno)iTable;
  rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  pCur->pOps = &sqliteBtreeCursorOps;
  pCur->pBt = pBt;
  pCur->wrFlag = wrFlag;
  pCur->idx = 0;
  pCur->eSkip = SKIP_INVALID;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pCur->pPrev = 0;
  pRing = pBt->pCursor;
  while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
  if( pRing ){
    pCur->pShared = pRing->pShared;
    pRing->pShared = pCur;
  }else{
    pCur->pShared = pCur;
  }
  pBt->pCursor = pCur;
  *ppCur = pCur;
  return SQLITE_OK;

create_cursor_exception:
  *ppCur = 0;
  if( pCur ){
    if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
    sqliteFree(pCur);
  }
  unlockBtreeIfUnused(pBt);
  return rc;
}
btree.c998
STATIC INTfileBtreeCloseCursor(BtCursor *pCur)
static int fileBtreeCloseCursor(BtCursor *pCur){
  Btree *pBt = pCur->pBt;
  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;
  }
  if( pCur->pPage ){
    sqlitepager_unref(pCur->pPage);
  }
  if( pCur->pShared!=pCur ){
    BtCursor *pRing = pCur->pShared;
    while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
    pRing->pShared = pCur->pShared;
  }
  unlockBtreeIfUnused(pBt);
  sqliteFree(pCur);
  return SQLITE_OK;
}
btree.c1096
STATIC VOIDgetTempCursor(BtCursor *pCur, BtCursor *pTempCur)
static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  memcpy(pTempCur, pCur, sizeof(*pCur));
  pTempCur->pNext = 0;
  pTempCur->pPrev = 0;
  if( pTempCur->pPage ){
    sqlitepager_ref(pTempCur->pPage);
  }
}
btree.c1123
STATIC VOIDreleaseTempCursor(BtCursor *pCur)
static void releaseTempCursor(BtCursor *pCur){
  if( pCur->pPage ){
    sqlitepager_unref(pCur->pPage);
  }
}
btree.c1136
STATIC INTfileBtreeKeySize(BtCursor *pCur, int *pSize)
static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->apCell[pCur->idx];
    *pSize = NKEY(pCur->pBt, pCell->h);
  }
  return SQLITE_OK;
}
btree.c1146
STATIC INTgetPayload(BtCursor *pCur, int offset, int amt, char *zBuf)
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
  char *aPayload;
  Pgno nextPage;
  int rc;
  Btree *pBt = pCur->pBt;
  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->idx>=0 && pCur->idxpPage->nCell );
  aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
  if( offsetMX_LOCAL_PAYLOAD ){
      a = MX_LOCAL_PAYLOAD - offset;
    }
    memcpy(zBuf, &aPayload[offset], a);
    if( a==amt ){
      return SQLITE_OK;
    }
    offset = 0;
    zBuf += a;
    amt -= a;
  }else{
    offset -= MX_LOCAL_PAYLOAD;
  }
  if( amt>0 ){
    nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
  }
  while( amt>0 && nextPage ){
    OverflowPage *pOvfl;
    rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
    if( rc!=0 ){
      return rc;
    }
    nextPage = SWAB32(pBt, pOvfl->iNext);
    if( offset OVERFLOW_SIZE ){
        a = OVERFLOW_SIZE - offset;
      }
      memcpy(zBuf, &pOvfl->aPayload[offset], a);
      offset = 0;
      amt -= a;
      zBuf += a;
    }else{
      offset -= OVERFLOW_SIZE;
    }
    sqlitepager_unref(pOvfl);
  }
  if( amt>0 ){
    return SQLITE_CORRUPT;
  }
  return SQLITE_OK;
}
btree.c1168
STATIC INTfileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf)
static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
  MemPage *pPage;

  assert( amt>=0 );
  assert( offset>=0 );
  assert( pCur->pPage!=0 );
  pPage = pCur->pPage;
  if( pCur->idx >= pPage->nCell ){
    return 0;
  }
  assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
  getPayload(pCur, offset, amt, zBuf);
  return amt;
}
btree.c1229
STATIC INTfileBtreeDataSize(BtCursor *pCur, int *pSize)
static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
  Cell *pCell;
  MemPage *pPage;

  pPage = pCur->pPage;
  assert( pPage!=0 );
  if( pCur->idx >= pPage->nCell ){
    *pSize = 0;
  }else{
    pCell = pPage->apCell[pCur->idx];
    *pSize = NDATA(pCur->pBt, pCell->h);
  }
  return SQLITE_OK;
}
btree.c1257
STATIC INTfileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf)
static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
  Cell *pCell;
  MemPage *pPage;

  assert( amt>=0 );
  assert( offset>=0 );
  assert( pCur->pPage!=0 );
  pPage = pCur->pPage;
  if( pCur->idx >= pPage->nCell ){
    return 0;
  }
  pCell = pPage->apCell[pCur->idx];
  assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
  getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
  return amt;
}
btree.c1279
STATIC INTfileBtreeKeyCompare( BtCursor *pCur, const void *pKey, int nKey, int nIgnore, int *pResult )
static int fileBtreeKeyCompare(
  BtCursor *pCur,       /* Pointer to entry to compare against */
  const void *pKey,     /* Key to compare against entry that pCur points to */
  int nKey,             /* Number of bytes in pKey */
  int nIgnore,          /* Ignore this many bytes at the end of pCur */
  int *pResult          /* Write the result here */
){
  Pgno nextPage;
  int n, c, rc, nLocal;
  Cell *pCell;
  Btree *pBt = pCur->pBt;
  const char *zKey  = (const char*)pKey;

  assert( pCur->pPage );
  assert( pCur->idx>=0 && pCur->idxpPage->nCell );
  pCell = pCur->pPage->apCell[pCur->idx];
  nLocal = NKEY(pBt, pCell->h) - nIgnore;
  if( nLocal<0 ) nLocal = 0;
  n = nKeyMX_LOCAL_PAYLOAD ){
    n = MX_LOCAL_PAYLOAD;
  }
  c = memcmp(pCell->aPayload, zKey, n);
  if( c!=0 ){
    *pResult = c;
    return SQLITE_OK;
  }
  zKey += n;
  nKey -= n;
  nLocal -= n;
  nextPage = SWAB32(pBt, pCell->ovfl);
  while( nKey>0 && nLocal>0 ){
    OverflowPage *pOvfl;
    if( nextPage==0 ){
      return SQLITE_CORRUPT;
    }
    rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
    if( rc ){
      return rc;
    }
    nextPage = SWAB32(pBt, pOvfl->iNext);
    n = nKeyOVERFLOW_SIZE ){
      n = OVERFLOW_SIZE;
    }
    c = memcmp(pOvfl->aPayload, zKey, n);
    sqlitepager_unref(pOvfl);
    if( c!=0 ){
      *pResult = c;
      return SQLITE_OK;
    }
    nKey -= n;
    nLocal -= n;
    zKey += n;
  }
  if( c==0 ){
    c = nLocal - nKey;
  }
  *pResult = c;
  return SQLITE_OK;
}
btree.c1304
STATIC INTmoveToChild(BtCursor *pCur, int newPgno)
static int moveToChild(BtCursor *pCur, int newPgno){
  int rc;
  MemPage *pNewPage;
  Btree *pBt = pCur->pBt;

  newPgno = SWAB32(pBt, newPgno);
  rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
  if( rc ) return rc;
  rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
  if( rc ) return rc;
  assert( pCur->idx>=pCur->pPage->nCell
          || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
  assert( pCur->idxpPage->nCell
          || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
  pNewPage->idxParent = pCur->idx;
  pCur->pPage->idxShift = 0;
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNewPage;
  pCur->idx = 0;
  if( pNewPage->nCell<1 ){
    return SQLITE_CORRUPT;
  }
  return SQLITE_OK;
}
btree.c1387
STATIC VOIDmoveToParent(BtCursor *pCur)
static void moveToParent(BtCursor *pCur){
  Pgno oldPgno;
  MemPage *pParent;
  MemPage *pPage;
  int idxParent;
  pPage = pCur->pPage;
  assert( pPage!=0 );
  pParent = pPage->pParent;
  assert( pParent!=0 );
  idxParent = pPage->idxParent;
  sqlitepager_ref(pParent);
  sqlitepager_unref(pPage);
  pCur->pPage = pParent;
  assert( pParent->idxShift==0 );
  if( pParent->idxShift==0 ){
    pCur->idx = idxParent;
#ifndef NDEBUG  
    /* Verify that pCur->idx is the correct index to point back to the child
    ** page we just came from 
    */
    oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
    if( pCur->idxnCell ){
      assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
    }else{
      assert( pParent->u.hdr.rightChild==oldPgno );
    }
#endif
  }else{
    /* The MemPage.idxShift flag indicates that cell indices might have 
    ** changed since idxParent was set and hence idxParent might be out
    ** of date.  So recompute the parent cell index by scanning all cells
    ** and locating the one that points to the child we just came from.
    */
    int i;
    pCur->idx = pParent->nCell;
    oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
    for(i=0; inCell; i++){
      if( pParent->apCell[i]->h.leftChild==oldPgno ){
        pCur->idx = i;
        break;
      }
    }
  }
}
btree.c1416
STATIC INTmoveToRoot(BtCursor *pCur)
static int moveToRoot(BtCursor *pCur){
  MemPage *pNew;
  int rc;
  Btree *pBt = pCur->pBt;

  rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
  if( rc ) return rc;
  rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
  if( rc ) return rc;
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNew;
  pCur->idx = 0;
  return SQLITE_OK;
}
btree.c1469
STATIC INTmoveToLeftmost(BtCursor *pCur)
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc;

  while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  return SQLITE_OK;
}
btree.c1487
STATIC INTmoveToRightmost(BtCursor *pCur)
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc;

  while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
    pCur->idx = pCur->pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->idx = pCur->pPage->nCell - 1;
  return SQLITE_OK;
}
btree.c1502
STATIC INTfileBtreeFirst(BtCursor *pCur, int *pRes)
static int fileBtreeFirst(BtCursor *pCur, int *pRes){
  int rc;
  if( pCur->pPage==0 ) return SQLITE_ABORT;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  if( pCur->pPage->nCell==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  *pRes = 0;
  rc = moveToLeftmost(pCur);
  pCur->eSkip = SKIP_NONE;
  return rc;
}
btree.c1522
STATIC INTfileBtreeLast(BtCursor *pCur, int *pRes)
static int fileBtreeLast(BtCursor *pCur, int *pRes){
  int rc;
  if( pCur->pPage==0 ) return SQLITE_ABORT;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  assert( pCur->pPage->isInit );
  if( pCur->pPage->nCell==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  *pRes = 0;
  rc = moveToRightmost(pCur);
  pCur->eSkip = SKIP_NONE;
  return rc;
}
btree.c1541
STATIC INTfileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes)
static
int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
  int rc;
  if( pCur->pPage==0 ) return SQLITE_ABORT;
  pCur->eSkip = SKIP_NONE;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;
    int c = -1;  /* pRes return if table is empty must be -1 */
    lwr = 0;
    upr = pPage->nCell-1;
    while( lwr<=upr ){
      pCur->idx = (lwr+upr)/2;
      rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
      if( rc ) return rc;
      if( c==0 ){
        pCur->iMatch = c;
        if( pRes ) *pRes = 0;
        return SQLITE_OK;
      }
      if( c<0 ){
        lwr = pCur->idx+1;
      }else{
        upr = pCur->idx-1;
      }
    }
    assert( lwr==upr+1 );
    assert( pPage->isInit );
    if( lwr>=pPage->nCell ){
      chldPg = pPage->u.hdr.rightChild;
    }else{
      chldPg = pPage->apCell[lwr]->h.leftChild;
    }
    if( chldPg==0 ){
      pCur->iMatch = c;
      if( pRes ) *pRes = c;
      return SQLITE_OK;
    }
    pCur->idx = lwr;
    rc = moveToChild(pCur, chldPg);
    if( rc ) return rc;
  }
  /* NOT REACHED */
}
btree.c1561
STATIC INTfileBtreeNext(BtCursor *pCur, int *pRes)
static int fileBtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage = pCur->pPage;
  assert( pRes!=0 );
  if( pPage==0 ){
    *pRes = 1;
    return SQLITE_ABORT;
  }
  assert( pPage->isInit );
  assert( pCur->eSkip!=SKIP_INVALID );
  if( pPage->nCell==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pCur->idxnCell );
  if( pCur->eSkip==SKIP_NEXT ){
    pCur->eSkip = SKIP_NONE;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->eSkip = SKIP_NONE;
  pCur->idx++;
  if( pCur->idx>=pPage->nCell ){
    if( pPage->u.hdr.rightChild ){
      rc = moveToChild(pCur, pPage->u.hdr.rightChild);
      if( rc ) return rc;
      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( pPage->pParent==0 ){
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }while( pCur->idx>=pPage->nCell );
    *pRes = 0;
    return SQLITE_OK;
  }
  *pRes = 0;
  if( pPage->u.hdr.rightChild==0 ){
    return SQLITE_OK;
  }
  rc = moveToLeftmost(pCur);
  return rc;
}
btree.c1632
STATIC INTfileBtreePrevious(BtCursor *pCur, int *pRes)
static int fileBtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;
  pPage = pCur->pPage;
  if( pPage==0 ){
    *pRes = 1;
    return SQLITE_ABORT;
  }
  assert( pPage->isInit );
  assert( pCur->eSkip!=SKIP_INVALID );
  if( pPage->nCell==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  if( pCur->eSkip==SKIP_PREV ){
    pCur->eSkip = SKIP_NONE;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->eSkip = SKIP_NONE;
  assert( pCur->idx>=0 );
  if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->idx==0 ){
      if( pPage->pParent==0 ){
        if( pRes ) *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }
    pCur->idx--;
    rc = SQLITE_OK;
  }
  *pRes = 0;
  return rc;
}
btree.c1687
STATIC INTallocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby)
static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
  PageOne *pPage1 = pBt->page1;
  int rc;
  if( pPage1->freeList ){
    OverflowPage *pOvfl;
    FreelistInfo *pInfo;

    rc = sqlitepager_write(pPage1);
    if( rc ) return rc;
    SWAB_ADD(pBt, pPage1->nFree, -1);
    rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
                        (void**)&pOvfl);
    if( rc ) return rc;
    rc = sqlitepager_write(pOvfl);
    if( rc ){
      sqlitepager_unref(pOvfl);
      return rc;
    }
    pInfo = (FreelistInfo*)pOvfl->aPayload;
    if( pInfo->nFree==0 ){
      *pPgno = SWAB32(pBt, pPage1->freeList);
      pPage1->freeList = pOvfl->iNext;
      *ppPage = (MemPage*)pOvfl;
    }else{
      int closest, n;
      n = SWAB32(pBt, pInfo->nFree);
      if( n>1 && nearby>0 ){
        int i, dist;
        closest = 0;
        dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
        if( dist<0 ) dist = -dist;
        for(i=1; iaFree[i]) - nearby;
          if( d2<0 ) d2 = -d2;
          if( d2nFree, -1);
      *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
      pInfo->aFree[closest] = pInfo->aFree[n-1];
      rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
      sqlitepager_unref(pOvfl);
      if( rc==SQLITE_OK ){
        sqlitepager_dont_rollback(*ppPage);
        rc = sqlitepager_write(*ppPage);
      }
    }
  }else{
    *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
    rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
    if( rc ) return rc;
    rc = sqlitepager_write(*ppPage);
  }
  return rc;
}
btree.c1735
STATIC INTfreePage(Btree *pBt, void *pPage, Pgno pgno)
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
  PageOne *pPage1 = pBt->page1;
  OverflowPage *pOvfl = (OverflowPage*)pPage;
  int rc;
  int needUnref = 0;
  MemPage *pMemPage;

  if( pgno==0 ){
    assert( pOvfl!=0 );
    pgno = sqlitepager_pagenumber(pOvfl);
  }
  assert( pgno>2 );
  assert( sqlitepager_pagenumber(pOvfl)==pgno );
  pMemPage = (MemPage*)pPage;
  pMemPage->isInit = 0;
  if( pMemPage->pParent ){
    sqlitepager_unref(pMemPage->pParent);
    pMemPage->pParent = 0;
  }
  rc = sqlitepager_write(pPage1);
  if( rc ){
    return rc;
  }
  SWAB_ADD(pBt, pPage1->nFree, 1);
  if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
    OverflowPage *pFreeIdx;
    rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
                        (void**)&pFreeIdx);
    if( rc==SQLITE_OK ){
      FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
      int n = SWAB32(pBt, pInfo->nFree);
      if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
        rc = sqlitepager_write(pFreeIdx);
        if( rc==SQLITE_OK ){
          pInfo->aFree[n] = SWAB32(pBt, pgno);
          SWAB_ADD(pBt, pInfo->nFree, 1);
          sqlitepager_unref(pFreeIdx);
          sqlitepager_dont_write(pBt->pPager, pgno);
          return rc;
        }
      }
      sqlitepager_unref(pFreeIdx);
    }
  }
  if( pOvfl==0 ){
    assert( pgno>0 );
    rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
    if( rc ) return rc;
    needUnref = 1;
  }
  rc = sqlitepager_write(pOvfl);
  if( rc ){
    if( needUnref ) sqlitepager_unref(pOvfl);
    return rc;
  }
  pOvfl->iNext = pPage1->freeList;
  pPage1->freeList = SWAB32(pBt, pgno);
  memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
  if( needUnref ) rc = sqlitepager_unref(pOvfl);
  return rc;
}
btree.c1810
STATIC INTclearCell(Btree *pBt, Cell *pCell)
static int clearCell(Btree *pBt, Cell *pCell){
  Pager *pPager = pBt->pPager;
  OverflowPage *pOvfl;
  Pgno ovfl, nextOvfl;
  int rc;

  if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
    return SQLITE_OK;
  }
  ovfl = SWAB32(pBt, pCell->ovfl);
  pCell->ovfl = 0;
  while( ovfl ){
    rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
    if( rc ) return rc;
    nextOvfl = SWAB32(pBt, pOvfl->iNext);
    rc = freePage(pBt, pOvfl, ovfl);
    if( rc ) return rc;
    sqlitepager_unref(pOvfl);
    ovfl = nextOvfl;
  }
  return SQLITE_OK;
}
btree.c1878
STATIC INTfillInCell( Btree *pBt, Cell *pCell, const void *pKey, int nKey, const void *pData,int nData )
static int fillInCell(
  Btree *pBt,              /* The whole Btree.  Needed to allocate pages */
  Cell *pCell,             /* Populate this Cell structure */
  const void *pKey, int nKey,    /* The key */
  const void *pData,int nData    /* The data */
){
  OverflowPage *pOvfl, *pPrior;
  Pgno *pNext;
  int spaceLeft;
  int n, rc;
  int nPayload;
  const char *pPayload;
  char *pSpace;
  Pgno nearby = 0;

  pCell->h.leftChild = 0;
  pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
  pCell->h.nKeyHi = nKey >> 16;
  pCell->h.nData = SWAB16(pBt, nData & 0xffff);
  pCell->h.nDataHi = nData >> 16;
  pCell->h.iNext = 0;

  pNext = &pCell->ovfl;
  pSpace = pCell->aPayload;
  spaceLeft = MX_LOCAL_PAYLOAD;
  pPayload = pKey;
  pKey = 0;
  nPayload = nKey;
  pPrior = 0;
  while( nPayload>0 ){
    if( spaceLeft==0 ){
      rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
      if( rc ){
        *pNext = 0;
      }else{
        nearby = *pNext;
      }
      if( pPrior ) sqlitepager_unref(pPrior);
      if( rc ){
        clearCell(pBt, pCell);
        return rc;
      }
      if( pBt->needSwab ) *pNext = swab32(*pNext);
      pPrior = pOvfl;
      spaceLeft = OVERFLOW_SIZE;
      pSpace = pOvfl->aPayload;
      pNext = &pOvfl->iNext;
    }
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;
    memcpy(pSpace, pPayload, n);
    nPayload -= n;
    if( nPayload==0 && pData ){
      pPayload = pData;
      nPayload = nData;
      pData = 0;
    }else{
      pPayload += n;
    }
    spaceLeft -= n;
    pSpace += n;
  }
  *pNext = 0;
  if( pPrior ){
    sqlitepager_unref(pPrior);
  }
  return SQLITE_OK;
}
btree.c1905
STATIC VOIDreparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx)
static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
  MemPage *pThis;

  if( pgno==0 ) return;
  assert( pPager!=0 );
  pThis = sqlitepager_lookup(pPager, pgno);
  if( pThis && pThis->isInit ){
    if( pThis->pParent!=pNewParent ){
      if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
      pThis->pParent = pNewParent;
      if( pNewParent ) sqlitepager_ref(pNewParent);
    }
    pThis->idxParent = idx;
    sqlitepager_unref(pThis);
  }
}
btree.c1978
STATIC VOIDreparentChildPages(Btree *pBt, MemPage *pPage)
static void reparentChildPages(Btree *pBt, MemPage *pPage){
  int i;
  Pager *pPager = pBt->pPager;
  for(i=0; inCell; i++){
    reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
  }
  reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
  pPage->idxShift = 0;
}
btree.c2000
STATIC VOIDdropCell(Btree *pBt, MemPage *pPage, int idx, int sz)
static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
  int j;
  assert( idx>=0 && idxnCell );
  assert( sz==cellSize(pBt, pPage->apCell[idx]) );
  assert( sqlitepager_iswriteable(pPage) );
  freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
  for(j=idx; jnCell-1; j++){
    pPage->apCell[j] = pPage->apCell[j+1];
  }
  pPage->nCell--;
  pPage->idxShift = 1;
}
btree.c2018
STATIC VOIDinsertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz)
static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
  int idx, j;
  assert( i>=0 && i<=pPage->nCell );
  assert( sz==cellSize(pBt, pCell) );
  assert( sqlitepager_iswriteable(pPage) );
  idx = allocateSpace(pBt, pPage, sz);
  for(j=pPage->nCell; j>i; j--){
    pPage->apCell[j] = pPage->apCell[j-1];
  }
  pPage->nCell++;
  if( idx<=0 ){
    pPage->isOverfull = 1;
    pPage->apCell[i] = pCell;
  }else{
    memcpy(&pPage->u.aDisk[idx], pCell, sz);
    pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
  }
  pPage->idxShift = 1;
}
btree.c2044
STATIC VOIDrelinkCellList(Btree *pBt, MemPage *pPage)
static void relinkCellList(Btree *pBt, MemPage *pPage){
  int i;
  u16 *pIdx;
  assert( sqlitepager_iswriteable(pPage) );
  pIdx = &pPage->u.hdr.firstCell;
  for(i=0; inCell; i++){
    int idx = Addr(pPage->apCell[i]) - Addr(pPage);
    assert( idx>0 && idxapCell[i]->h.iNext;
  }
  *pIdx = 0;
}
btree.c2077
STATIC VOIDcopyPage(MemPage *pTo, MemPage *pFrom)
static void copyPage(MemPage *pTo, MemPage *pFrom){
  uptr from, to;
  int i;
  memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
  pTo->pParent = 0;
  pTo->isInit = 1;
  pTo->nCell = pFrom->nCell;
  pTo->nFree = pFrom->nFree;
  pTo->isOverfull = pFrom->isOverfull;
  to = Addr(pTo);
  from = Addr(pFrom);
  for(i=0; inCell; i++){
    uptr x = Addr(pFrom->apCell[i]);
    if( x>from && xapCell[i]) = x + to - from;
    }else{
      pTo->apCell[i] = pFrom->apCell[i];
    }
  }
}

btree.c2097
STATIC INTbalance(Btree *pBt, MemPage *pPage, BtCursor *pCur)
static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
  MemPage *pParent;            /* The parent of pPage */
  int nCell;                   /* Number of cells in apCell[] */
  int nOld;                    /* Number of pages in apOld[] */
  int nNew;                    /* Number of pages in apNew[] */
  int nDiv;                    /* Number of cells in apDiv[] */
  int i, j, k;                 /* Loop counters */
  int idx;                     /* Index of pPage in pParent->apCell[] */
  int nxDiv;                   /* Next divider slot in pParent->apCell[] */
  int rc;                      /* The return code */
  int iCur;                    /* apCell[iCur] is the cell of the cursor */
  MemPage *pOldCurPage;        /* The cursor originally points to this page */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  MemPage *extraUnref = 0;     /* A page that needs to be unref-ed */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  MemPage *apNew[NB+1];        /* pPage and up to NB siblings after balancing */
  Pgno pgnoNew[NB+1];          /* Page numbers for each page in apNew[] */
  int idxDiv[NB];              /* Indices of divider cells in pParent */
  Cell *apDiv[NB];             /* Divider cells in pParent */
  Cell aTemp[NB];              /* Temporary holding area for apDiv[] */
  int cntNew[NB+1];            /* Index in apCell[] of cell after i-th page */
  int szNew[NB+1];             /* Combined size of cells place on i-th page */
  MemPage aOld[NB];            /* Temporary copies of pPage and its siblings */
  Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
  int szCell[(MX_CELL+2)*NB];  /* Local size of all cells */

  /* 
  ** Return without doing any work if pPage is neither overfull nor
  ** underfull.
  */
  assert( sqlitepager_iswriteable(pPage) );
  if( !pPage->isOverfull && pPage->nFreenCell>=2){
    relinkCellList(pBt, pPage);
    return SQLITE_OK;
  }

  /*
  ** Find the parent of the page to be balanceed.
  ** If there is no parent, it means this page is the root page and
  ** special rules apply.
  */
  pParent = pPage->pParent;
  if( pParent==0 ){
    Pgno pgnoChild;
    MemPage *pChild;
    assert( pPage->isInit );
    if( pPage->nCell==0 ){
      if( pPage->u.hdr.rightChild ){
        /*
        ** The root page is empty.  Copy the one child page
        ** into the root page and return.  This reduces the depth
        ** of the BTree by one.
        */
        pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
        rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
        if( rc ) return rc;
        memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
        pPage->isInit = 0;
        rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
        assert( rc==SQLITE_OK );
        reparentChildPages(pBt, pPage);
        if( pCur && pCur->pPage==pChild ){
          sqlitepager_unref(pChild);
          pCur->pPage = pPage;
          sqlitepager_ref(pPage);
        }
        freePage(pBt, pChild, pgnoChild);
        sqlitepager_unref(pChild);
      }else{
        relinkCellList(pBt, pPage);
      }
      return SQLITE_OK;
    }
    if( !pPage->isOverfull ){
      /* It is OK for the root page to be less than half full.
      */
      relinkCellList(pBt, pPage);
      return SQLITE_OK;
    }
    /*
    ** If we get to here, it means the root page is overfull.
    ** When this happens, Create a new child page and copy the
    ** contents of the root into the child.  Then make the root
    ** page an empty page with rightChild pointing to the new
    ** child.  Then fall thru to the code below which will cause
    ** the overfull child page to be split.
    */
    rc = sqlitepager_write(pPage);
    if( rc ) return rc;
    rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
    if( rc ) return rc;
    assert( sqlitepager_iswriteable(pChild) );
    copyPage(pChild, pPage);
    pChild->pParent = pPage;
    pChild->idxParent = 0;
    sqlitepager_ref(pPage);
    pChild->isOverfull = 1;
    if( pCur && pCur->pPage==pPage ){
      sqlitepager_unref(pPage);
      pCur->pPage = pChild;
    }else{
      extraUnref = pChild;
    }
    zeroPage(pBt, pPage);
    pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
    pParent = pPage;
    pPage = pChild;
  }
  rc = sqlitepager_write(pParent);
  if( rc ) return rc;
  assert( pParent->isInit );
  
  /*
  ** Find the Cell in the parent page whose h.leftChild points back
  ** to pPage.  The "idx" variable is the index of that cell.  If pPage
  ** is the rightmost child of pParent then set idx to pParent->nCell 
  */
  if( pParent->idxShift ){
    Pgno pgno, swabPgno;
    pgno = sqlitepager_pagenumber(pPage);
    swabPgno = SWAB32(pBt, pgno);
    for(idx=0; idxnCell; idx++){
      if( pParent->apCell[idx]->h.leftChild==swabPgno ){
        break;
      }
    }
    assert( idxnCell || pParent->u.hdr.rightChild==swabPgno );
  }else{
    idx = pPage->idxParent;
  }

  /*
  ** Initialize variables so that it will be safe to jump
  ** directly to balance_cleanup at any moment.
  */
  nOld = nNew = 0;
  sqlitepager_ref(pParent);

  /*
  ** Find sibling pages to pPage and the Cells in pParent that divide
  ** the siblings.  An attempt is made to find NN siblings on either
  ** side of pPage.  More siblings are taken from one side, however, if
  ** pPage there are fewer than NN siblings on the other side.  If pParent
  ** has NB or fewer children then all children of pParent are taken.
  */
  nxDiv = idx - NN;
  if( nxDiv + NB > pParent->nCell ){
    nxDiv = pParent->nCell - NB + 1;
  }
  if( nxDiv<0 ){
    nxDiv = 0;
  }
  nDiv = 0;
  for(i=0, k=nxDiv; inCell ){
      idxDiv[i] = k;
      apDiv[i] = pParent->apCell[k];
      nDiv++;
      pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
    }else if( k==pParent->nCell ){
      pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
    }else{
      break;
    }
    rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
    if( rc ) goto balance_cleanup;
    rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
    if( rc ) goto balance_cleanup;
    apOld[i]->idxParent = k;
    nOld++;
  }

  /*
  ** Set iCur to be the index in apCell[] of the cell that the cursor
  ** is pointing to.  We will need this later on in order to keep the
  ** cursor pointing at the same cell.  If pCur points to a page that
  ** has no involvement with this rebalancing, then set iCur to a large
  ** number so that the iCur==j tests always fail in the main cell
  ** distribution loop below.
  */
  if( pCur ){
    iCur = 0;
    for(i=0; ipPage==apOld[i] ){
        iCur += pCur->idx;
        break;
      }
      iCur += apOld[i]->nCell;
      if( ipPage==pParent && pCur->idx==idxDiv[i] ){
        break;
      }
      iCur++;
    }
    pOldCurPage = pCur->pPage;
  }

  /*
  ** Make copies of the content of pPage and its siblings into aOld[].
  ** The rest of this function will use data from the copies rather
  ** that the original pages since the original pages will be in the
  ** process of being overwritten.
  */
  for(i=0; inCell; j++){
      apCell[nCell] = pOld->apCell[j];
      szCell[nCell] = cellSize(pBt, apCell[nCell]);
      nCell++;
    }
    if( ih.leftChild)==pgnoOld[i] );
      apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
      nCell++;
    }
  }

  /*
  ** Figure out the number of pages needed to hold all nCell cells.
  ** Store this number in "k".  Also compute szNew[] which is the total
  ** size of all cells on the i-th page and cntNew[] which is the index
  ** in apCell[] of the cell that divides path i from path i+1.  
  ** cntNew[k] should equal nCell.
  **
  ** This little patch of code is critical for keeping the tree
  ** balanced. 
  */
  for(subtotal=k=i=0; i USABLE_SPACE ){
      szNew[k] = subtotal - szCell[i];
      cntNew[k] = i;
      subtotal = 0;
      k++;
    }
  }
  szNew[k] = subtotal;
  cntNew[k] = nCell;
  k++;
  for(i=k-1; i>0; i--){
    while( szNew[i]0 );
      szNew[i] += szCell[cntNew[i-1]];
      szNew[i-1] -= szCell[cntNew[i-1]-1];
    }
  }
  assert( cntNew[0]>0 );

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  for(i=0; iisInit = 1;
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( ii ){
      int t;
      MemPage *pT;
      t = pgnoNew[i];
      pT = apNew[i];
      pgnoNew[i] = pgnoNew[minI];
      apNew[i] = apNew[minI];
      pgnoNew[minI] = t;
      apNew[minI] = pT;
    }
  }

  /*
  ** Evenly distribute the data in apCell[] across the new pages.
  ** Insert divider cells into pParent as necessary.
  */
  j = 0;
  for(i=0; inFree>=szCell[j] );
      if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
      insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
      j++;
    }
    assert( pNew->nCell>0 );
    assert( !pNew->isOverfull );
    relinkCellList(pBt, pNew);
    if( iu.hdr.rightChild = apCell[j]->h.leftChild;
      apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
      if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
      insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
      j++;
      nxDiv++;
    }
  }
  assert( j==nCell );
  apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
  if( nxDiv==pParent->nCell ){
    pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
  }else{
    pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
  }
  if( pCur ){
    if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
      assert( pCur->pPage==pOldCurPage );
      pCur->idx += nNew - nOld;
    }else{
      assert( pOldCurPage!=0 );
      sqlitepager_ref(pCur->pPage);
      sqlitepager_unref(pOldCurPage);
    }
  }

  /*
  ** Reparent children of all cells.
  */
  for(i=0; ipPage==0 ){
    pCur->pPage = pParent;
    pCur->idx = 0;
  }else{
    sqlitepager_unref(pParent);
  }
  return rc;
}
btree.c2139
STATIC INTcheckReadLocks(BtCursor *pCur)
static int checkReadLocks(BtCursor *pCur){
  BtCursor *p;
  assert( pCur->wrFlag );
  for(p=pCur->pShared; p!=pCur; p=p->pShared){
    assert( p );
    assert( p->pgnoRoot==pCur->pgnoRoot );
    if( p->wrFlag==0 ) return SQLITE_LOCKED;
    if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
      moveToRoot(p);
    }
  }
  return SQLITE_OK;
}
btree.c2584
STATIC INTfileBtreeInsert( BtCursor *pCur, const void *pKey, int nKey, const void *pData, int nData )
static int fileBtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const void *pKey, int nKey,    /* The key of the new record */
  const void *pData, int nData   /* The data of the new record */
){
  Cell newCell;
  int rc;
  int loc;
  int szNew;
  MemPage *pPage;
  Btree *pBt = pCur->pBt;

  if( pCur->pPage==0 ){
    return SQLITE_ABORT;  /* A rollback destroyed this cursor */
  }
  if( !pBt->inTrans || nKey+nData==0 ){
    /* Must start a transaction before doing an insert */
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  pPage = pCur->pPage;
  assert( pPage->isInit );
  rc = sqlitepager_write(pPage);
  if( rc ) return rc;
  rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
  if( rc ) return rc;
  szNew = cellSize(pBt, &newCell);
  if( loc==0 ){
    newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
    rc = clearCell(pBt, pPage->apCell[pCur->idx]);
    if( rc ) return rc;
    dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->u.hdr.rightChild==0 );  /* Must be a leaf page */
    pCur->idx++;
  }else{
    assert( pPage->u.hdr.rightChild==0 );  /* Must be a leaf page */
  }
  insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
  rc = balance(pCur->pBt, pPage, pCur);
  /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
  /* fflush(stdout); */
  pCur->eSkip = SKIP_INVALID;
  return rc;
}
btree.c2613
STATIC INTfileBtreeDelete(BtCursor *pCur)
static int fileBtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  Cell *pCell;
  int rc;
  Pgno pgnoChild;
  Btree *pBt = pCur->pBt;

  assert( pPage->isInit );
  if( pCur->pPage==0 ){
    return SQLITE_ABORT;  /* A rollback destroyed this cursor */
  }
  if( !pBt->inTrans ){
    /* Must start a transaction before doing a delete */
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  assert( !pBt->readOnly );
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  rc = sqlitepager_write(pPage);
  if( rc ) return rc;
  pCell = pPage->apCell[pCur->idx];
  pgnoChild = SWAB32(pBt, pCell->h.leftChild);
  clearCell(pBt, pCell);
  if( pgnoChild ){
    /*
    ** The entry we are about to delete is not a leaf so if we do not
    ** do something we will leave a hole on an internal page.
    ** We have to fill the hole by moving in a cell from a leaf.  The
    ** next Cell after the one to be deleted is guaranteed to exist and
    ** to be a leaf so we can use it.
    */
    BtCursor leafCur;
    Cell *pNext;
    int szNext;
    int notUsed;
    getTempCursor(pCur, &leafCur);
    rc = fileBtreeNext(&leafCur, ¬Used);
    if( rc!=SQLITE_OK ){
      if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
      return rc;
    }
    rc = sqlitepager_write(leafCur.pPage);
    if( rc ) return rc;
    dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
    pNext = leafCur.pPage->apCell[leafCur.idx];
    szNext = cellSize(pBt, pNext);
    pNext->h.leftChild = SWAB32(pBt, pgnoChild);
    insertCell(pBt, pPage, pCur->idx, pNext, szNext);
    rc = balance(pBt, pPage, pCur);
    if( rc ) return rc;
    pCur->eSkip = SKIP_NEXT;
    dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
    rc = balance(pBt, leafCur.pPage, pCur);
    releaseTempCursor(&leafCur);
  }else{
    dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
    if( pCur->idx>=pPage->nCell ){
      pCur->idx = pPage->nCell-1;
      if( pCur->idx<0 ){ 
        pCur->idx = 0;
        pCur->eSkip = SKIP_NEXT;
      }else{
        pCur->eSkip = SKIP_PREV;
      }
    }else{
      pCur->eSkip = SKIP_NEXT;
    }
    rc = balance(pBt, pPage, pCur);
  }
  return rc;
}
btree.c2673
STATIC INTfileBtreeCreateTable(Btree *pBt, int *piTable)
static int fileBtreeCreateTable(Btree *pBt, int *piTable){
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  if( !pBt->inTrans ){
    /* Must start a transaction first */
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  if( pBt->readOnly ){
    return SQLITE_READONLY;
  }
  rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
  if( rc ) return rc;
  assert( sqlitepager_iswriteable(pRoot) );
  zeroPage(pBt, pRoot);
  sqlitepager_unref(pRoot);
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}
btree.c2766
STATIC INTclearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag)
static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
  MemPage *pPage;
  int rc;
  Cell *pCell;
  int idx;

  rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
  if( rc ) return rc;
  rc = sqlitepager_write(pPage);
  if( rc ) return rc;
  rc = initPage(pBt, pPage, pgno, 0);
  if( rc ) return rc;
  idx = SWAB16(pBt, pPage->u.hdr.firstCell);
  while( idx>0 ){
    pCell = (Cell*)&pPage->u.aDisk[idx];
    idx = SWAB16(pBt, pCell->h.iNext);
    if( pCell->h.leftChild ){
      rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
      if( rc ) return rc;
    }
    rc = clearCell(pBt, pCell);
    if( rc ) return rc;
  }
  if( pPage->u.hdr.rightChild ){
    rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
    if( rc ) return rc;
  }
  if( freePageFlag ){
    rc = freePage(pBt, pPage, pgno);
  }else{
    zeroPage(pBt, pPage);
  }
  sqlitepager_unref(pPage);
  return rc;
}
btree.c2796
STATIC INTfileBtreeClearTable(Btree *pBt, int iTable)
static int fileBtreeClearTable(Btree *pBt, int iTable){
  int rc;
  BtCursor *pCur;
  if( !pBt->inTrans ){
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pgnoRoot==(Pgno)iTable ){
      if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
      moveToRoot(pCur);
    }
  }
  rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
  if( rc ){
    fileBtreeRollback(pBt);
  }
  return rc;
}
btree.c2836
STATIC INTfileBtreeDropTable(Btree *pBt, int iTable)
static int fileBtreeDropTable(Btree *pBt, int iTable){
  int rc;
  MemPage *pPage;
  BtCursor *pCur;
  if( !pBt->inTrans ){
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->pgnoRoot==(Pgno)iTable ){
      return SQLITE_LOCKED;  /* Cannot drop a table that has a cursor */
    }
  }
  rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
  if( rc ) return rc;
  rc = fileBtreeClearTable(pBt, iTable);
  if( rc ) return rc;
  if( iTable>2 ){
    rc = freePage(pBt, pPage, iTable);
  }else{
    zeroPage(pBt, pPage);
  }
  sqlitepager_unref(pPage);
  return rc;  
}
btree.c2858
STATIC INTcopyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell)
static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
  Pager *pFromPager = pBtFrom->pPager;
  OverflowPage *pOvfl;
  Pgno ovfl, nextOvfl;
  Pgno *pPrev;
  int rc = SQLITE_OK;
  MemPage *pNew, *pPrevPg;
  Pgno new;

  if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
    return SQLITE_OK;
  }
  pPrev = &pCell->ovfl;
  pPrevPg = 0;
  ovfl = SWAB32(pBtTo, pCell->ovfl);
  while( ovfl && rc==SQLITE_OK ){
    rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
    if( rc ) return rc;
    nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
    rc = allocatePage(pBtTo, &pNew, &new, 0);
    if( rc==SQLITE_OK ){
      rc = sqlitepager_write(pNew);
      if( rc==SQLITE_OK ){
        memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
        *pPrev = SWAB32(pBtTo, new);
        if( pPrevPg ){
          sqlitepager_unref(pPrevPg);
        }
        pPrev = &pOvfl->iNext;
        pPrevPg = pNew;
      }
    }
    sqlitepager_unref(pOvfl);
    ovfl = nextOvfl;
  }
  if( pPrevPg ){
    sqlitepager_unref(pPrevPg);
  }
  return rc;
}
btree.c2889
STATIC INTcopyDatabasePage( Btree *pBtFrom, Pgno pgnoFrom, Btree *pBtTo, Pgno *pTo )
static int copyDatabasePage(
  Btree *pBtFrom,
  Pgno pgnoFrom,
  Btree *pBtTo,
  Pgno *pTo
){
  MemPage *pPageFrom, *pPage;
  Pgno to;
  int rc;
  Cell *pCell;
  int idx;

  rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
  if( rc ) return rc;
  rc = allocatePage(pBt, &pPage, pTo, 0);
  if( rc==SQLITE_OK ){
    rc = sqlitepager_write(pPage);
  }
  if( rc==SQLITE_OK ){
    memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
    idx = SWAB16(pBt, pPage->u.hdr.firstCell);
    while( idx>0 ){
      pCell = (Cell*)&pPage->u.aDisk[idx];
      idx = SWAB16(pBt, pCell->h.iNext);
      if( pCell->h.leftChild ){
        Pgno newChld;
        rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
                              pBtTo, &newChld);
        if( rc ) return rc;
        pCell->h.leftChild = SWAB32(pBtFrom, newChld);
      }
      rc = copyCell(pBtFrom, pBtTo, pCell);
      if( rc ) return rc;
    }
    if( pPage->u.hdr.rightChild ){
      Pgno newChld;
      rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild), 
                            pBtTo, &newChld);
      if( rc ) return rc;
      pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
    }
  }
  sqlitepager_unref(pPage);
  return rc;
}
btree.c2937
STATIC INTfileBtreeGetMeta(Btree *pBt, int *aMeta)
static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
  PageOne *pP1;
  int rc;
  int i;

  rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
  if( rc ) return rc;
  aMeta[0] = SWAB32(pBt, pP1->nFree);
  for(i=0; iaMeta)/sizeof(pP1->aMeta[0]); i++){
    aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
  }
  sqlitepager_unref(pP1);
  return SQLITE_OK;
}
btree.c2987
STATIC INTfileBtreeUpdateMeta(Btree *pBt, int *aMeta)
static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
  PageOne *pP1;
  int rc, i;
  if( !pBt->inTrans ){
    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  }
  pP1 = pBt->page1;
  rc = sqlitepager_write(pP1);
  if( rc ) return rc;   
  for(i=0; iaMeta)/sizeof(pP1->aMeta[0]); i++){
    pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
  }
  return SQLITE_OK;
}

/******************************************************************************
** The complete implementation of the BTree subsystem is above this line.
** All the code the follows is for testing and troubleshooting the BTree
** subsystem.  None of the code that follows is used during normal operation.
******************************************************************************/

btree.c3005
STATIC INTfileBtreePageDump(Btree *pBt, int pgno, int recursive)
static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
  int rc;
  MemPage *pPage;
  int i, j;
  int nFree;
  u16 idx;
  char range[20];
  unsigned char payload[20];
  rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
  if( rc ){
    return rc;
  }
  if( recursive ) printf("PAGE %d:\n", pgno);
  i = 0;
  idx = SWAB16(pBt, pPage->u.hdr.firstCell);
  while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
    Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
    int sz = cellSize(pBt, pCell);
    sprintf(range,"%d..%d", idx, idx+sz-1);
    sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
    if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
    memcpy(payload, pCell->aPayload, sz);
    for(j=0; j0x7f ) payload[j] = '.';
    }
    payload[sz] = 0;
    printf(
      "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
      i, range, (int)pCell->h.leftChild, 
      NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
      payload
    );
    if( pPage->isInit && pPage->apCell[i]!=pCell ){
      printf("**** apCell[%d] does not match on prior entry ****\n", i);
    }
    i++;
    idx = SWAB16(pBt, pCell->h.iNext);
  }
  if( idx!=0 ){
    printf("ERROR: next cell index out of range: %d\n", idx);
  }
  printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
  nFree = 0;
  i = 0;
  idx = SWAB16(pBt, pPage->u.hdr.firstFree);
  while( idx>0 && idxu.aDisk[idx];
    sprintf(range,"%d..%d", idx, idx+p->iSize-1);
    nFree += SWAB16(pBt, p->iSize);
    printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
       i, range, SWAB16(pBt, p->iSize), nFree);
    idx = SWAB16(pBt, p->iNext);
    i++;
  }
  if( idx!=0 ){
    printf("ERROR: next freeblock index out of range: %d\n", idx);
  }
  if( recursive && pPage->u.hdr.rightChild!=0 ){
    idx = SWAB16(pBt, pPage->u.hdr.firstCell);
    while( idx>0 && idxu.aDisk[idx];
      fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
      idx = SWAB16(pBt, pCell->h.iNext);
    }
    fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
  }
  sqlitepager_unref(pPage);
  return SQLITE_OK;
}
btree.c3034
STATIC INTfileBtreeCursorDump(BtCursor *pCur, int *aResult)
static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
  int cnt, idx;
  MemPage *pPage = pCur->pPage;
  Btree *pBt = pCur->pBt;
  aResult[0] = sqlitepager_pagenumber(pPage);
  aResult[1] = pCur->idx;
  aResult[2] = pPage->nCell;
  if( pCur->idx>=0 && pCur->idxnCell ){
    aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
    aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
  }else{
    aResult[3] = 0;
    aResult[6] = 0;
  }
  aResult[4] = pPage->nFree;
  cnt = 0;
  idx = SWAB16(pBt, pPage->u.hdr.firstFree);
  while( idx>0 && idxu.aDisk[idx])->iNext);
  }
  aResult[5] = cnt;
  aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
  return SQLITE_OK;
}
btree.c3106
STATIC PAGER fileBtreePager(Btree *pBt)
static Pager *fileBtreePager(Btree *pBt){
  return pBt->pPager;
}

/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  Btree *pBt;    /* The tree being checked out */
  Pager *pPager; /* The associated pager.  Also accessible by pBt->pPager */
  int nPage;     /* Number of pages in the database */
  int *anRef;    /* Number of times each page is referenced */
  char *zErrMsg; /* An error message.  NULL of no errors seen. */
};
btree.c3148
STATIC VOIDcheckAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2)
static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
  if( pCheck->zErrMsg ){
    char *zOld = pCheck->zErrMsg;
    pCheck->zErrMsg = 0;
    sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
    sqliteFree(zOld);
  }else{
    sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
  }
}
btree.c3169
STATIC INTcheckRef(IntegrityCk *pCheck, int iPage, char *zContext)
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage || iPage<0 ){
    char zBuf[100];
    sprintf(zBuf, "invalid page number %d", iPage);
    checkAppendMsg(pCheck, zContext, zBuf);
    return 1;
  }
  if( pCheck->anRef[iPage]==1 ){
    char zBuf[100];
    sprintf(zBuf, "2nd reference to page %d", iPage);
    checkAppendMsg(pCheck, zContext, zBuf);
    return 1;
  }
  return  (pCheck->anRef[iPage]++)>1;
}
btree.c3183
STATIC VOIDcheckList( IntegrityCk *pCheck, int isFreeList, int iPage, int N, char *zContext )
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N,                /* Expected number of pages in the list */
  char *zContext        /* Context for error messages */
){
  int i;
  char zMsg[100];
  while( N-- > 0 ){
    OverflowPage *pOvfl;
    if( iPage<1 ){
      sprintf(zMsg, "%d pages missing from overflow list", N+1);
      checkAppendMsg(pCheck, zContext, zMsg);
      break;
    }
    if( checkRef(pCheck, iPage, zContext) ) break;
    if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
      sprintf(zMsg, "failed to get page %d", iPage);
      checkAppendMsg(pCheck, zContext, zMsg);
      break;
    }
    if( isFreeList ){
      FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
      int n = SWAB32(pCheck->pBt, pInfo->nFree);
      for(i=0; ipBt, pInfo->aFree[i]), zContext);
      }
      N -= n;
    }
    iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
    sqlitepager_unref(pOvfl);
  }
}
btree.c3208
STATIC INTkeyCompare( const char *zKey1, int nKey1, const char *zKey2, int nKey2 )
static int keyCompare(
  const char *zKey1, int nKey1,
  const char *zKey2, int nKey2
){
  int min = nKey1>nKey2 ? nKey2 : nKey1;
  int c = memcmp(zKey1, zKey2, min);
  if( c==0 ){
    c = nKey1 - nKey2;
  }
  return c;
}
btree.c3247
STATIC INTcheckTreePage( IntegrityCk *pCheck, int iPage, MemPage *pParent, char *zParentContext, char *zLowerBound, int nLower, char *zUpperBound, int nUpper )
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  MemPage *pParent,     /* Parent page */
  char *zParentContext, /* Parent context */
  char *zLowerBound,    /* All keys should be greater than this, if not NULL */
  int nLower,           /* Number of characters in zLowerBound */
  char *zUpperBound,    /* All keys should be less than this, if not NULL */
  int nUpper            /* Number of characters in zUpperBound */
){
  MemPage *pPage;
  int i, rc, depth, d2, pgno;
  char *zKey1, *zKey2;
  int nKey1, nKey2;
  BtCursor cur;
  Btree *pBt;
  char zMsg[100];
  char zContext[100];
  char hit[SQLITE_USABLE_SIZE];

  /* Check that the page exists
  */
  cur.pBt = pBt = pCheck->pBt;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  sprintf(zContext, "On tree page %d: ", iPage);
  if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
    sprintf(zMsg, "unable to get the page. error code=%d", rc);
    checkAppendMsg(pCheck, zContext, zMsg);
    return 0;
  }
  if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
    sprintf(zMsg, "initPage() returns error code %d", rc);
    checkAppendMsg(pCheck, zContext, zMsg);
    sqlitepager_unref(pPage);
    return 0;
  }

  /* Check out all the cells.
  */
  depth = 0;
  if( zLowerBound ){
    zKey1 = sqliteMalloc( nLower+1 );
    memcpy(zKey1, zLowerBound, nLower);
    zKey1[nLower] = 0;
  }else{
    zKey1 = 0;
  }
  nKey1 = nLower;
  cur.pPage = pPage;
  for(i=0; inCell; i++){
    Cell *pCell = pPage->apCell[i];
    int sz;

    /* Check payload overflow pages
    */
    nKey2 = NKEY(pBt, pCell->h);
    sz = nKey2 + NDATA(pBt, pCell->h);
    sprintf(zContext, "On page %d cell %d: ", iPage, i);
    if( sz>MX_LOCAL_PAYLOAD ){
      int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
      checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
    }

    /* Check that keys are in the right order
    */
    cur.idx = i;
    zKey2 = sqliteMallocRaw( nKey2+1 );
    getPayload(&cur, 0, nKey2, zKey2);
    if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
      checkAppendMsg(pCheck, zContext, "Key is out of order");
    }

    /* Check sanity of left child page.
    */
    pgno = SWAB32(pBt, pCell->h.leftChild);
    d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
    if( i>0 && d2!=depth ){
      checkAppendMsg(pCheck, zContext, "Child page depth differs");
    }
    depth = d2;
    sqliteFree(zKey1);
    zKey1 = zKey2;
    nKey1 = nKey2;
  }
  pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
  sprintf(zContext, "On page %d at right child: ", iPage);
  checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
  sqliteFree(zKey1);
 
  /* Check for complete coverage of the page
  */
  memset(hit, 0, sizeof(hit));
  memset(hit, 1, sizeof(PageHdr));
  for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && iu.aDisk[i];
    int j;
    for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
    i = SWAB16(pBt, pCell->h.iNext);
  }
  for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && iu.aDisk[i];
    int j;
    for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
    i = SWAB16(pBt,pFBlk->iNext);
  }
  for(i=0; i1 ){
      sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
      checkAppendMsg(pCheck, zMsg, 0);
      break;
    }
  }

  /* Check that free space is kept to a minimum
  */
#if 0
  if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
    sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
       SQLITE_USABLE_SIZE/3);
    checkAppendMsg(pCheck, zContext, zMsg);
  }
#endif

  sqlitepager_unref(pPage);
  return depth;
}
btree.c3264
CHAR fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot)
char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
  int i;
  int nRef;
  IntegrityCk sCheck;

  nRef = *sqlitepager_stats(pBt->pPager);
  if( lockBtree(pBt)!=SQLITE_OK ){
    return sqliteStrDup("Unable to acquire a read lock on the database");
  }
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
  if( sCheck.nPage==0 ){
    unlockBtreeIfUnused(pBt);
    return 0;
  }
  sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
  sCheck.anRef[1] = 1;
  for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  sCheck.zErrMsg = 0;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
            SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");

  /* Check all the tables.
  */
  for(i=0; ipPager) ){
    char zBuf[100];
    sprintf(zBuf, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, *sqlitepager_stats(pBt->pPager)
    );
    checkAppendMsg(&sCheck, zBuf, 0);
  }

  /* Clean  up and report errors.
  */
  sqliteFree(sCheck.anRef);
  return sCheck.zErrMsg;
}
btree.c3414
STATIC CONST CHAR fileBtreeGetFilename(Btree *pBt)
static const char *fileBtreeGetFilename(Btree *pBt){
  assert( pBt->pPager!=0 );
  return sqlitepager_filename(pBt->pPager);
}
btree.c3485
STATIC INTfileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom)
static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
  int rc = SQLITE_OK;
  Pgno i, nPage, nToPage;

  if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
  if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
  if( pBtTo->pCursor ) return SQLITE_BUSY;
  memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
  rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
  nToPage = sqlitepager_pagecount(pBtTo->pPager);
  nPage = sqlitepager_pagecount(pBtFrom->pPager);
  for(i=2; rc==SQLITE_OK && i<=nPage; i++){
    void *pPage;
    rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
    if( rc ) break;
    rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
    if( rc ) break;
    sqlitepager_unref(pPage);
  }
  for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
    void *pPage;
    rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
    if( rc ) break;
    rc = sqlitepager_write(pPage);
    sqlitepager_unref(pPage);
    sqlitepager_dont_write(pBtTo->pPager, i);
  }
  if( !rc && nPagepPager, nPage);
  }
  if( rc ){
    fileBtreeRollback(pBtTo);
  }
  return rc;  
}

/*
** The following tables contain pointers to all of the interface
** routines for this implementation of the B*Tree backend.  To
** substitute a different implemention of the backend, one has merely
** to provide pointers to alternative functions in similar tables.
*/
static BtOps sqliteBtreeOps = {
    fileBtreeClose,
    fileBtreeSetCacheSize,
    fileBtreeSetSafetyLevel,
    fileBtreeBeginTrans,
    fileBtreeCommit,
    fileBtreeRollback,
    fileBtreeBeginCkpt,
    fileBtreeCommitCkpt,
    fileBtreeRollbackCkpt,
    fileBtreeCreateTable,
    fileBtreeCreateTable,  /* Really sqliteBtreeCreateIndex() */
    fileBtreeDropTable,
    fileBtreeClearTable,
    fileBtreeCursor,
    fileBtreeGetMeta,
    fileBtreeUpdateMeta,
    fileBtreeIntegrityCheck,
    fileBtreeGetFilename,
    fileBtreeCopyFile,
    fileBtreePager,
#ifdef SQLITE_TEST
    fileBtreePageDump,
#endif
};
static BtCursorOps sqliteBtreeCursorOps = {
    fileBtreeMoveto,
    fileBtreeDelete,
    fileBtreeInsert,
    fileBtreeFirst,
    fileBtreeLast,
    fileBtreeNext,
    fileBtreePrevious,
    fileBtreeKeySize,
    fileBtreeKey,
    fileBtreeKeyCompare,
    fileBtreeDataSize,
    fileBtreeData,
    fileBtreeCloseCursor,
#ifdef SQLITE_TEST
    fileBtreeCursorDump,
#endif
};
btree.c3493
btree_rb.c
TypeFunctionSourceLine
STATIC INTcheckReadLocks(RbtCursor *pCur)
static int checkReadLocks(RbtCursor *pCur){
  RbtCursor *p;
  assert( pCur->wrFlag );
  for(p=pCur->pTree->pCursors; p; p=p->pShared){
    if( p!=pCur ){
      if( p->wrFlag==0 ) return SQLITE_LOCKED;
      p->pNode = 0;
    }
  }
  return SQLITE_OK;
}
btree_rb.c146
STATIC INTkey_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
{
  int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2);
  if( mcmp == 0){
    if( nKey1 == nKey2 ) return 0;
    return ((nKey1 < nKey2)?-1:1);
  }
  return ((mcmp>0)?1:-1);
}
btree_rb.c172
STATIC VOIDleftRotate(BtRbTree *pTree, BtRbNode *pX)
static void leftRotate(BtRbTree *pTree, BtRbNode *pX)
{
  BtRbNode *pY;
  BtRbNode *pb;
  pY = pX->pRight;
  pb = pY->pLeft;

  pY->pParent = pX->pParent;
  if( pX->pParent ){
    if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
    else pX->pParent->pRight = pY;
  }
  pY->pLeft = pX;
  pX->pParent = pY;
  pX->pRight = pb;
  if( pb ) pb->pParent = pX;
  if( pTree->pHead == pX ) pTree->pHead = pY;
}
btree_rb.c192
STATIC VOIDrightRotate(BtRbTree *pTree, BtRbNode *pX)
static void rightRotate(BtRbTree *pTree, BtRbNode *pX)
{
  BtRbNode *pY;
  BtRbNode *pb;
  pY = pX->pLeft;
  pb = pY->pRight;

  pY->pParent = pX->pParent;
  if( pX->pParent ){
    if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
    else pX->pParent->pRight = pY;
  }
  pY->pRight = pX;
  pX->pParent = pY;
  pX->pLeft = pb;
  if( pb ) pb->pParent = pX;
  if( pTree->pHead == pX ) pTree->pHead = pY;
}
btree_rb.c224
STATIC CHAR append_val(char * orig, char const * val)
static char *append_val(char * orig, char const * val){
  char *z;
  if( !orig ){
    z = sqliteStrDup( val );
  } else{
    z = 0;
    sqliteSetString(&z, orig, val, (char*)0);
    sqliteFree( orig );
  }
  return z;
}
btree_rb.c256
STATIC CHAR append_node(char * orig, BtRbNode *pNode, int indent)
static char *append_node(char * orig, BtRbNode *pNode, int indent)
{
  char buf[128];
  int i;

  for( i=0; iisBlack ){
      orig = append_val(orig, " B \n");
    }else{
      orig = append_val(orig, " R \n");
    }
    orig = append_node( orig, pNode->pLeft, indent );
    orig = append_node( orig, pNode->pRight, indent );
  }else{
    orig = append_val(orig, "\n");
  }
  return orig;
}
btree_rb.c274
STATIC VOIDprint_node(BtRbNode *pNode)
static void print_node(BtRbNode *pNode)
{
    char * str = append_node(0, pNode, 0);
    printf("%s", str);

    /* Suppress a warning message about print_node() being unused */
    (void)print_node;
}
btree_rb.c306
STATIC VOIDcheck_redblack_tree(BtRbTree * tree, char ** msg)
static void check_redblack_tree(BtRbTree * tree, char ** msg)
{
  BtRbNode *pNode;

  /* 0 -> came from parent 
   * 1 -> came from left
   * 2 -> came from right */
  int prev_step = 0;

  pNode = tree->pHead;
  while( pNode ){
    switch( prev_step ){
      case 0:
        if( pNode->pLeft ){
          pNode = pNode->pLeft;
        }else{ 
          prev_step = 1;
        }
        break;
      case 1:
        if( pNode->pRight ){
          pNode = pNode->pRight;
          prev_step = 0;
        }else{
          prev_step = 2;
        }
        break;
      case 2:
        /* Check red-black property (1) */
        if( !pNode->isBlack &&
            ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
              (pNode->pRight && !pNode->pRight->isBlack) )
          ){
          char buf[128];
          sprintf(buf, "Red node with red child at %p\n", pNode);
          *msg = append_val(*msg, buf);
          *msg = append_node(*msg, tree->pHead, 0);
          *msg = append_val(*msg, "\n");
        }

        /* Check red-black property (2) */
        { 
          int leftHeight = 0;
          int rightHeight = 0;
          if( pNode->pLeft ){
            leftHeight += pNode->pLeft->nBlackHeight;
            leftHeight += (pNode->pLeft->isBlack?1:0);
          }
          if( pNode->pRight ){
            rightHeight += pNode->pRight->nBlackHeight;
            rightHeight += (pNode->pRight->isBlack?1:0);
          }
          if( leftHeight != rightHeight ){
            char buf[128];
            sprintf(buf, "Different black-heights at %p\n", pNode);
            *msg = append_val(*msg, buf);
            *msg = append_node(*msg, tree->pHead, 0);
            *msg = append_val(*msg, "\n");
          }
          pNode->nBlackHeight = leftHeight;
        }

        if( pNode->pParent ){
          if( pNode == pNode->pParent->pLeft ) prev_step = 1;
          else prev_step = 2;
        }
        pNode = pNode->pParent;
        break;
      default: assert(0);
    }
  }
} 
btree_rb.c320
STATIC VOIDdo_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
{
  /* In the first iteration of this loop, pX points to the red node just
   * inserted in the tree. If the parent of pX exists (pX is not the root
   * node) and is red, then the properties of the red-black tree are
   * violated.
   *
   * At the start of any subsequent iterations, pX points to a red node
   * with a red parent. In all other respects the tree is a legal red-black
   * binary tree. */
  while( pX != pTree->pHead && !pX->pParent->isBlack ){
    BtRbNode *pUncle;
    BtRbNode *pGrandparent;

    /* Grandparent of pX must exist and must be black. */
    pGrandparent = pX->pParent->pParent;
    assert( pGrandparent );
    assert( pGrandparent->isBlack );

    /* Uncle of pX may or may not exist. */
    if( pX->pParent == pGrandparent->pLeft ) 
      pUncle = pGrandparent->pRight;
    else 
      pUncle = pGrandparent->pLeft;

    /* If the uncle of pX exists and is red, we do the following:
     *       |                 |
     *      G(b)              G(r)
     *      /  \              /  \        
     *   U(r)   P(r)       U(b)  P(b)
     *            \                \
     *           X(r)              X(r)
     *
     *     BEFORE             AFTER
     * pX is then set to G. If the parent of G is red, then the while loop
     * will run again.  */
    if( pUncle && !pUncle->isBlack ){
      pGrandparent->isBlack = 0;
      pUncle->isBlack = 1;
      pX->pParent->isBlack = 1;
      pX = pGrandparent;
    }else{

      if( pX->pParent == pGrandparent->pLeft ){
        if( pX == pX->pParent->pRight ){
          /* If pX is a right-child, do the following transform, essentially
           * to change pX into a left-child: 
           *       |                  | 
           *      G(b)               G(b)
           *      /  \               /  \        
           *   P(r)   U(b)        X(r)  U(b)
           *      \                /
           *     X(r)            P(r) <-- new X
           *
           *     BEFORE             AFTER
           */
          pX = pX->pParent;
          leftRotate(pTree, pX);
        }

        /* Do the following transform, which balances the tree :) 
         *       |                  | 
         *      G(b)               P(b)
         *      /  \               /  \        
         *   P(r)   U(b)        X(r)  G(r)
         *    /                         \
         *  X(r)                        U(b)
         *
         *     BEFORE             AFTER
         */
        assert( pGrandparent == pX->pParent->pParent );
        pGrandparent->isBlack = 0;
        pX->pParent->isBlack = 1;
        rightRotate( pTree, pGrandparent );

      }else{
        /* This code is symetric to the illustrated case above. */
        if( pX == pX->pParent->pLeft ){
          pX = pX->pParent;
          rightRotate(pTree, pX);
        }
        assert( pGrandparent == pX->pParent->pParent );
        pGrandparent->isBlack = 0;
        pX->pParent->isBlack = 1;
        leftRotate( pTree, pGrandparent );
      }
    }
  }
  pTree->pHead->isBlack = 1;
}
btree_rb.c401
STATIC VOIDdo_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
static 
void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
{
  BtRbNode *pSib; 

  /* TODO: Comment this code! */
  while( pX != pTree->pHead && (!pX || pX->isBlack) ){
    if( pX == pParent->pLeft ){
      pSib = pParent->pRight;
      if( pSib && !(pSib->isBlack) ){
        pSib->isBlack = 1;
        pParent->isBlack = 0;
        leftRotate(pTree, pParent);
        pSib = pParent->pRight;
      }
      if( !pSib ){
        pX = pParent;
      }else if( 
          (!pSib->pLeft  || pSib->pLeft->isBlack) &&
          (!pSib->pRight || pSib->pRight->isBlack) ) {
        pSib->isBlack = 0;
        pX = pParent;
      }else{
        if( (!pSib->pRight || pSib->pRight->isBlack) ){
          if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
          pSib->isBlack = 0;
          rightRotate( pTree, pSib );
          pSib = pParent->pRight;
        }
        pSib->isBlack = pParent->isBlack;
        pParent->isBlack = 1;
        if( pSib->pRight ) pSib->pRight->isBlack = 1;
        leftRotate(pTree, pParent);
        pX = pTree->pHead;
      }
    }else{
      pSib = pParent->pLeft;
      if( pSib && !(pSib->isBlack) ){
        pSib->isBlack = 1;
        pParent->isBlack = 0;
        rightRotate(pTree, pParent);
        pSib = pParent->pLeft;
      }
      if( !pSib ){
        pX = pParent;
      }else if( 
          (!pSib->pLeft  || pSib->pLeft->isBlack) &&
          (!pSib->pRight || pSib->pRight->isBlack) ){
        pSib->isBlack = 0;
        pX = pParent;
      }else{
        if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
          if( pSib->pRight ) pSib->pRight->isBlack = 1;
          pSib->isBlack = 0;
          leftRotate( pTree, pSib );
          pSib = pParent->pLeft;
        }
        pSib->isBlack = pParent->isBlack;
        pParent->isBlack = 1;
        if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
        rightRotate(pTree, pParent);
        pX = pTree->pHead;
      }
    }
    pParent = pX->pParent;
  }
  if( pX ) pX->isBlack = 1;
}
btree_rb.c498
STATIC VOIDbtreeCreateTable(Rbtree* pRbtree, int n)
static void btreeCreateTable(Rbtree* pRbtree, int n)
{
  BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree));
  sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl);
}
btree_rb.c582
STATIC VOIDbtreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
{
  assert( pRbtree->eTransState == TRANS_INCHECKPOINT ||
      pRbtree->eTransState == TRANS_INTRANSACTION );
  if( pRbtree->eTransState == TRANS_INTRANSACTION ){
    pRollbackOp->pNext = pRbtree->pTransRollback;
    pRbtree->pTransRollback = pRollbackOp;
  }
  if( pRbtree->eTransState == TRANS_INCHECKPOINT ){
    if( !pRbtree->pCheckRollback ){
      pRbtree->pCheckRollbackTail = pRollbackOp;
    }
    pRollbackOp->pNext = pRbtree->pCheckRollback;
    pRbtree->pCheckRollback = pRollbackOp;
  }
}
btree_rb.c591
INTsqliteRbtreeOpen( const char *zFilename, int mode, int nPg, Btree **ppBtree )
int sqliteRbtreeOpen(
  const char *zFilename,
  int mode,
  int nPg,
  Btree **ppBtree
){
  Rbtree **ppRbtree = (Rbtree**)ppBtree;
  *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
  if( sqlite_malloc_failed ) goto open_no_mem;
  sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);

  /* Create a binary tree for the SQLITE_MASTER table at location 2 */
  btreeCreateTable(*ppRbtree, 2);
  if( sqlite_malloc_failed ) goto open_no_mem;
  (*ppRbtree)->next_idx = 3;
  (*ppRbtree)->pOps = &sqliteRbtreeOps;
  /* Set file type to 4; this is so that "attach ':memory:' as ...."  does not
  ** think that the database in uninitialised and refuse to attach
  */
  (*ppRbtree)->aMetaData[2] = 4;
  
  return SQLITE_OK;

open_no_mem:
  *ppBtree = 0;
  return SQLITE_NOMEM;
}
btree_rb.c612
STATIC INTmemRbtreeCreateTable(Rbtree* tree, int* n)
static int memRbtreeCreateTable(Rbtree* tree, int* n)
{
  assert( tree->eTransState != TRANS_NONE );

  *n = tree->next_idx++;
  btreeCreateTable(tree, *n);
  if( sqlite_malloc_failed ) return SQLITE_NOMEM;

  /* Set up the rollback structure (if we are not doing this as part of a
   * rollback) */
  if( tree->eTransState != TRANS_ROLLBACK ){
    BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
    if( pRollbackOp==0 ) return SQLITE_NOMEM;
    pRollbackOp->eOp = ROLLBACK_DROP;
    pRollbackOp->iTab = *n;
    btreeLogRollbackOp(tree, pRollbackOp);
  }

  return SQLITE_OK;
}
btree_rb.c640
STATIC INTmemRbtreeDropTable(Rbtree* tree, int n)
static int memRbtreeDropTable(Rbtree* tree, int n)
{
  BtRbTree *pTree;
  assert( tree->eTransState != TRANS_NONE );

  memRbtreeClearTable(tree, n);
  pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
  assert(pTree);
  assert( pTree->pCursors==0 );
  sqliteFree(pTree);

  if( tree->eTransState != TRANS_ROLLBACK ){
    BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
    if( pRollbackOp==0 ) return SQLITE_NOMEM;
    pRollbackOp->eOp = ROLLBACK_CREATE;
    pRollbackOp->iTab = n;
    btreeLogRollbackOp(tree, pRollbackOp);
  }

  return SQLITE_OK;
}
btree_rb.c665
STATIC INTmemRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey, int nIgnore, int *pRes)
static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey,
                                 int nIgnore, int *pRes)
{
  assert(pCur);

  if( !pCur->pNode ) {
    *pRes = -1;
  } else {
    if( (pCur->pNode->nKey - nIgnore) < 0 ){
      *pRes = -1;
    }else{
      *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, 
          pKey, nKey);
    }
  }
  return SQLITE_OK;
}
btree_rb.c690
STATIC INTmemRbtreeCursor( Rbtree* tree, int iTable, int wrFlag, RbtCursor **ppCur )
static int memRbtreeCursor(
  Rbtree* tree,
  int iTable,
  int wrFlag,
  RbtCursor **ppCur
){
  RbtCursor *pCur;
  assert(tree);
  pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor));
  if( sqlite_malloc_failed ) return SQLITE_NOMEM;
  pCur->pTree  = sqliteHashFind(&tree->tblHash, 0, iTable);
  assert( pCur->pTree );
  pCur->pRbtree = tree;
  pCur->iTree  = iTable;
  pCur->pOps = &sqliteRbtreeCursorOps;
  pCur->wrFlag = wrFlag;
  pCur->pShared = pCur->pTree->pCursors;
  pCur->pTree->pCursors = pCur;

  assert( (*ppCur)->pTree );
  return SQLITE_OK;
}
btree_rb.c708
STATIC INTmemRbtreeInsert( RbtCursor* pCur, const void *pKey, int nKey, const void *pDataInput, int nData )
static int memRbtreeInsert(
  RbtCursor* pCur,
  const void *pKey,
  int nKey,
  const void *pDataInput,
  int nData
){
  void * pData;
  int match;

  /* It is illegal to call sqliteRbtreeInsert() if we are
  ** not in a transaction */
  assert( pCur->pRbtree->eTransState != TRANS_NONE );

  /* Make sure some other cursor isn't trying to read this same table */
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Take a copy of the input data now, in case we need it for the 
   * replace case */
  pData = sqliteMallocRaw(nData);
  if( sqlite_malloc_failed ) return SQLITE_NOMEM;
  memcpy(pData, pDataInput, nData);

  /* Move the cursor to a node near the key to be inserted. If the key already
   * exists in the table, then (match == 0). In this case we can just replace
   * the data associated with the entry, we don't need to manipulate the tree.
   * 
   * If there is no exact match, then the cursor points at what would be either
   * the predecessor (match == -1) or successor (match == 1) of the
   * searched-for key, were it to be inserted. The new node becomes a child of
   * this node.
   * 
   * The new node is initially red.
   */
  memRbtreeMoveto( pCur, pKey, nKey, &match);
  if( match ){
    BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
    if( pNode==0 ) return SQLITE_NOMEM;
    pNode->nKey = nKey;
    pNode->pKey = sqliteMallocRaw(nKey);
    if( sqlite_malloc_failed ) return SQLITE_NOMEM;
    memcpy(pNode->pKey, pKey, nKey);
    pNode->nData = nData;
    pNode->pData = pData; 
    if( pCur->pNode ){
      switch( match ){
        case -1:
          assert( !pCur->pNode->pRight );
          pNode->pParent = pCur->pNode;
          pCur->pNode->pRight = pNode;
          break;
        case 1:
          assert( !pCur->pNode->pLeft );
          pNode->pParent = pCur->pNode;
          pCur->pNode->pLeft = pNode;
          break;
        default:
          assert(0);
      }
    }else{
      pCur->pTree->pHead = pNode;
    }

    /* Point the cursor at the node just inserted, as per SQLite requirements */
    pCur->pNode = pNode;

    /* A new node has just been inserted, so run the balancing code */
    do_insert_balancing(pCur->pTree, pNode);

    /* Set up a rollback-op in case we have to roll this operation back */
    if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
      BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
      if( pOp==0 ) return SQLITE_NOMEM;
      pOp->eOp = ROLLBACK_DELETE;
      pOp->iTab = pCur->iTree;
      pOp->nKey = pNode->nKey;
      pOp->pKey = sqliteMallocRaw( pOp->nKey );
      if( sqlite_malloc_failed ) return SQLITE_NOMEM;
      memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
      btreeLogRollbackOp(pCur->pRbtree, pOp);
    }

  }else{ 
    /* No need to insert a new node in the tree, as the key already exists.
     * Just clobber the current nodes data. */

    /* Set up a rollback-op in case we have to roll this operation back */
    if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
      BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
      if( pOp==0 ) return SQLITE_NOMEM;
      pOp->iTab = pCur->iTree;
      pOp->nKey = pCur->pNode->nKey;
      pOp->pKey = sqliteMallocRaw( pOp->nKey );
      if( sqlite_malloc_failed ) return SQLITE_NOMEM;
      memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
      pOp->nData = pCur->pNode->nData;
      pOp->pData = pCur->pNode->pData;
      pOp->eOp = ROLLBACK_INSERT;
      btreeLogRollbackOp(pCur->pRbtree, pOp);
    }else{
      sqliteFree( pCur->pNode->pData );
    }

    /* Actually clobber the nodes data */
    pCur->pNode->pData = pData;
    pCur->pNode->nData = nData;
  }

  return SQLITE_OK;
}
btree_rb.c737
STATIC INTmemRbtreeMoveto( RbtCursor* pCur, const void *pKey, int nKey, int *pRes )
static int memRbtreeMoveto(
  RbtCursor* pCur,
  const void *pKey,
  int nKey,
  int *pRes
){
  BtRbNode *pTmp = 0;

  pCur->pNode = pCur->pTree->pHead;
  *pRes = -1;
  while( pCur->pNode && *pRes ) {
    *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
    pTmp = pCur->pNode;
    switch( *pRes ){
      case 1:    /* cursor > key */
        pCur->pNode = pCur->pNode->pLeft;
        break;
      case -1:   /* cursor < key */
        pCur->pNode = pCur->pNode->pRight;
        break;
    }
  } 

  /* If (pCur->pNode == NULL), then we have failed to find a match. Set
   * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
   * last node traversed in the search. In either case the relation ship
   * between pTmp and the searched for key is already stored in *pRes. pTmp is
   * either the successor or predecessor of the key we tried to move to. */
  if( !pCur->pNode ) pCur->pNode = pTmp;
  pCur->eSkip = SKIP_NONE;

  return SQLITE_OK;
}
btree_rb.c858
STATIC INTmemRbtreeDelete(RbtCursor* pCur)
static int memRbtreeDelete(RbtCursor* pCur)
{
  BtRbNode *pZ;      /* The one being deleted */
  BtRbNode *pChild;  /* The child of the spliced out node */

  /* It is illegal to call sqliteRbtreeDelete() if we are
  ** not in a transaction */
  assert( pCur->pRbtree->eTransState != TRANS_NONE );

  /* Make sure some other cursor isn't trying to read this same table */
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  pZ = pCur->pNode;
  if( !pZ ){
    return SQLITE_OK;
  }

  /* If we are not currently doing a rollback, set up a rollback op for this 
   * deletion */
  if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
    BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
    if( pOp==0 ) return SQLITE_NOMEM;
    pOp->iTab = pCur->iTree;
    pOp->nKey = pZ->nKey;
    pOp->pKey = pZ->pKey;
    pOp->nData = pZ->nData;
    pOp->pData = pZ->pData;
    pOp->eOp = ROLLBACK_INSERT;
    btreeLogRollbackOp(pCur->pRbtree, pOp);
  }

  /* First do a standard binary-tree delete (node pZ is to be deleted). How
   * to do this depends on how many children pZ has:
   *
   * If pZ has no children or one child, then splice out pZ.  If pZ has two
   * children, splice out the successor of pZ and replace the key and data of
   * pZ with the key and data of the spliced out successor.  */
  if( pZ->pLeft && pZ->pRight ){
    BtRbNode *pTmp;
    int dummy;
    pCur->eSkip = SKIP_NONE;
    memRbtreeNext(pCur, &dummy);
    assert( dummy == 0 );
    if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
      sqliteFree(pZ->pKey);
      sqliteFree(pZ->pData);
    }
    pZ->pData = pCur->pNode->pData;
    pZ->nData = pCur->pNode->nData;
    pZ->pKey = pCur->pNode->pKey;
    pZ->nKey = pCur->pNode->nKey;
    pTmp = pZ;
    pZ = pCur->pNode;
    pCur->pNode = pTmp;
    pCur->eSkip = SKIP_NEXT;
  }else{
    int res;
    pCur->eSkip = SKIP_NONE;
    memRbtreeNext(pCur, &res);
    pCur->eSkip = SKIP_NEXT;
    if( res ){
      memRbtreeLast(pCur, &res);
      memRbtreePrevious(pCur, &res);
      pCur->eSkip = SKIP_PREV;
    }
    if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
        sqliteFree(pZ->pKey);
        sqliteFree(pZ->pData);
    }
  }

  /* pZ now points at the node to be spliced out. This block does the 
   * splicing. */
  {
    BtRbNode **ppParentSlot = 0;
    assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
    pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
    if( pZ->pParent ){
      assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
      ppParentSlot = ((pZ == pZ->pParent->pLeft)
          ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
      *ppParentSlot = pChild;
    }else{
      pCur->pTree->pHead = pChild;
    }
    if( pChild ) pChild->pParent = pZ->pParent;
  }

  /* pZ now points at the spliced out node. pChild is the only child of pZ, or
   * NULL if pZ has no children. If pZ is black, and not the tree root, then we
   * will have violated the "same number of black nodes in every path to a
   * leaf" property of the red-black tree. The code in do_delete_balancing()
   * repairs this. */
  if( pZ->isBlack ){ 
    do_delete_balancing(pCur->pTree, pChild, pZ->pParent);
  }

  sqliteFree(pZ);
  return SQLITE_OK;
}
btree_rb.c906
STATIC INTmemRbtreeClearTable(Rbtree* tree, int n)
static int memRbtreeClearTable(Rbtree* tree, int n)
{
  BtRbTree *pTree;
  BtRbNode *pNode;

  pTree = sqliteHashFind(&tree->tblHash, 0, n);
  assert(pTree);

  pNode = pTree->pHead;
  while( pNode ){
    if( pNode->pLeft ){
      pNode = pNode->pLeft;
    }
    else if( pNode->pRight ){
      pNode = pNode->pRight;
    }
    else {
      BtRbNode *pTmp = pNode->pParent;
      if( tree->eTransState == TRANS_ROLLBACK ){
        sqliteFree( pNode->pKey );
        sqliteFree( pNode->pData );
      }else{
        BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
        if( pRollbackOp==0 ) return SQLITE_NOMEM;
        pRollbackOp->eOp = ROLLBACK_INSERT;
        pRollbackOp->iTab = n;
        pRollbackOp->nKey = pNode->nKey;
        pRollbackOp->pKey = pNode->pKey;
        pRollbackOp->nData = pNode->nData;
        pRollbackOp->pData = pNode->pData;
        btreeLogRollbackOp(tree, pRollbackOp);
      }
      sqliteFree( pNode );
      if( pTmp ){
        if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
        else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
      }
      pNode = pTmp;
    }
  }

  pTree->pHead = 0;
  return SQLITE_OK;
}
btree_rb.c1023
STATIC INTmemRbtreeFirst(RbtCursor* pCur, int *pRes)
static int memRbtreeFirst(RbtCursor* pCur, int *pRes)
{
  if( pCur->pTree->pHead ){
    pCur->pNode = pCur->pTree->pHead;
    while( pCur->pNode->pLeft ){
      pCur->pNode = pCur->pNode->pLeft;
    }
  }
  if( pCur->pNode ){
    *pRes = 0;
  }else{
    *pRes = 1;
  }
  pCur->eSkip = SKIP_NONE;
  return SQLITE_OK;
}
btree_rb.c1071
STATIC INTmemRbtreeLast(RbtCursor* pCur, int *pRes)
static int memRbtreeLast(RbtCursor* pCur, int *pRes)
{
  if( pCur->pTree->pHead ){
    pCur->pNode = pCur->pTree->pHead;
    while( pCur->pNode->pRight ){
      pCur->pNode = pCur->pNode->pRight;
    }
  }
  if( pCur->pNode ){
    *pRes = 0;
  }else{
    *pRes = 1;
  }
  pCur->eSkip = SKIP_NONE;
  return SQLITE_OK;
}
btree_rb.c1088
STATIC INTmemRbtreeNext(RbtCursor* pCur, int *pRes)
static int memRbtreeNext(RbtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
    if( pCur->pNode->pRight ){
      pCur->pNode = pCur->pNode->pRight;
      while( pCur->pNode->pLeft )
        pCur->pNode = pCur->pNode->pLeft;
    }else{
      BtRbNode * pX = pCur->pNode;
      pCur->pNode = pX->pParent;
      while( pCur->pNode && (pCur->pNode->pRight == pX) ){
        pX = pCur->pNode;
        pCur->pNode = pX->pParent;
      }
    }
  }
  pCur->eSkip = SKIP_NONE;

  if( !pCur->pNode ){
    *pRes = 1;
  }else{
    *pRes = 0;
  }

  return SQLITE_OK;
}
btree_rb.c1105
STATIC INTmemRbtreePrevious(RbtCursor* pCur, int *pRes)
static int memRbtreePrevious(RbtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
    if( pCur->pNode->pLeft ){
      pCur->pNode = pCur->pNode->pLeft;
      while( pCur->pNode->pRight )
        pCur->pNode = pCur->pNode->pRight;
    }else{
      BtRbNode * pX = pCur->pNode;
      pCur->pNode = pX->pParent;
      while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
        pX = pCur->pNode;
        pCur->pNode = pX->pParent;
      }
    }
  }
  pCur->eSkip = SKIP_NONE;

  if( !pCur->pNode ){
    *pRes = 1;
  }else{
    *pRes = 0;
  }

  return SQLITE_OK;
}
btree_rb.c1138
STATIC INTmemRbtreeKeySize(RbtCursor* pCur, int *pSize)
static int memRbtreeKeySize(RbtCursor* pCur, int *pSize)
{
  if( pCur->pNode ){
    *pSize = pCur->pNode->nKey;
  }else{
    *pSize = 0;
  }
  return SQLITE_OK;
}
btree_rb.c1165
STATIC INTmemRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
{
  if( !pCur->pNode ) return 0;
  if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){
    memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt);
  }else{
    memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset);
    amt = pCur->pNode->nKey-offset;
  }
  return amt;
}
btree_rb.c1175
STATIC INTmemRbtreeDataSize(RbtCursor* pCur, int *pSize)
static int memRbtreeDataSize(RbtCursor* pCur, int *pSize)
{
  if( pCur->pNode ){
    *pSize = pCur->pNode->nData;
  }else{
    *pSize = 0;
  }
  return SQLITE_OK;
}
btree_rb.c1187
STATIC INTmemRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
{
  if( !pCur->pNode ) return 0;
  if( (amt + offset) <= pCur->pNode->nData ){
    memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt);
  }else{
    memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset);
    amt = pCur->pNode->nData-offset;
  }
  return amt;
}
btree_rb.c1197
STATIC INTmemRbtreeCloseCursor(RbtCursor* pCur)
static int memRbtreeCloseCursor(RbtCursor* pCur)
{
  if( pCur->pTree->pCursors==pCur ){
    pCur->pTree->pCursors = pCur->pShared;
  }else{
    RbtCursor *p = pCur->pTree->pCursors;
    while( p && p->pShared!=pCur ){ p = p->pShared; }
    assert( p!=0 );
    if( p ){
      p->pShared = pCur->pShared;
    }
  }
  sqliteFree(pCur);
  return SQLITE_OK;
}
btree_rb.c1209
STATIC INTmemRbtreeGetMeta(Rbtree* tree, int* aMeta)
static int memRbtreeGetMeta(Rbtree* tree, int* aMeta)
{
  memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META );
  return SQLITE_OK;
}
btree_rb.c1225
STATIC INTmemRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
{
  memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META );
  return SQLITE_OK;
}
btree_rb.c1231
STATIC CHAR memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
{
  char * msg = 0;
  HashElem *p;

  for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
    BtRbTree *pTree = sqliteHashData(p);
    check_redblack_tree(pTree, &msg);
  }

  return msg;
}
btree_rb.c1237
STATIC INTmemRbtreeSetCacheSize(Rbtree* tree, int sz)
static int memRbtreeSetCacheSize(Rbtree* tree, int sz)
{
  return SQLITE_OK;
}
btree_rb.c1255
STATIC INTmemRbtreeSetSafetyLevel(Rbtree *pBt, int level)
static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){
  return SQLITE_OK;
}
btree_rb.c1260
STATIC INTmemRbtreeBeginTrans(Rbtree* tree)
static int memRbtreeBeginTrans(Rbtree* tree)
{
  if( tree->eTransState != TRANS_NONE ) 
    return SQLITE_ERROR;

  assert( tree->pTransRollback == 0 );
  tree->eTransState = TRANS_INTRANSACTION;
  return SQLITE_OK;
}
btree_rb.c1264
STATIC VOIDdeleteRollbackList(BtRollbackOp *pOp)
static void deleteRollbackList(BtRollbackOp *pOp){
  while( pOp ){
    BtRollbackOp *pTmp = pOp->pNext;
    sqliteFree(pOp->pData);
    sqliteFree(pOp->pKey);
    sqliteFree(pOp);
    pOp = pTmp;
  }
}
btree_rb.c1274
STATIC INTmemRbtreeCommit(Rbtree* tree)
static int memRbtreeCommit(Rbtree* tree){
  /* Just delete pTransRollback and pCheckRollback */
  deleteRollbackList(tree->pCheckRollback);
  deleteRollbackList(tree->pTransRollback);
  tree->pTransRollback = 0;
  tree->pCheckRollback = 0;
  tree->pCheckRollbackTail = 0;
  tree->eTransState = TRANS_NONE;
  return SQLITE_OK;
}
btree_rb.c1287
STATIC INTmemRbtreeClose(Rbtree* tree)
static int memRbtreeClose(Rbtree* tree)
{
  HashElem *p;
  memRbtreeCommit(tree);
  while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
    tree->eTransState = TRANS_ROLLBACK;
    memRbtreeDropTable(tree, sqliteHashKeysize(p));
  }
  sqliteHashClear(&tree->tblHash);
  sqliteFree(tree);
  return SQLITE_OK;
}
btree_rb.c1298
STATIC VOIDexecute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
{
  BtRollbackOp *pTmp;
  RbtCursor cur;
  int res;

  cur.pRbtree = pRbtree;
  cur.wrFlag = 1;
  while( pList ){
    switch( pList->eOp ){
      case ROLLBACK_INSERT:
        cur.pTree  = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
        assert(cur.pTree);
        cur.iTree  = pList->iTab;
        cur.eSkip  = SKIP_NONE;
        memRbtreeInsert( &cur, pList->pKey,
            pList->nKey, pList->pData, pList->nData );
        break;
      case ROLLBACK_DELETE:
        cur.pTree  = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
        assert(cur.pTree);
        cur.iTree  = pList->iTab;
        cur.eSkip  = SKIP_NONE;
        memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
        assert(res == 0);
        memRbtreeDelete( &cur );
        break;
      case ROLLBACK_CREATE:
        btreeCreateTable(pRbtree, pList->iTab);
        break;
      case ROLLBACK_DROP:
        memRbtreeDropTable(pRbtree, pList->iTab);
        break;
      default:
        assert(0);
    }
    sqliteFree(pList->pKey);
    sqliteFree(pList->pData);
    pTmp = pList->pNext;
    sqliteFree(pList);
    pList = pTmp;
  }
}
btree_rb.c1314
STATIC INTmemRbtreeRollback(Rbtree* tree)
static int memRbtreeRollback(Rbtree* tree)
{
  tree->eTransState = TRANS_ROLLBACK;
  execute_rollback_list(tree, tree->pCheckRollback);
  execute_rollback_list(tree, tree->pTransRollback);
  tree->pTransRollback = 0;
  tree->pCheckRollback = 0;
  tree->pCheckRollbackTail = 0;
  tree->eTransState = TRANS_NONE;
  return SQLITE_OK;
}
btree_rb.c1361
STATIC INTmemRbtreeBeginCkpt(Rbtree* tree)
static int memRbtreeBeginCkpt(Rbtree* tree)
{
  if( tree->eTransState != TRANS_INTRANSACTION ) 
    return SQLITE_ERROR;

  assert( tree->pCheckRollback == 0 );
  assert( tree->pCheckRollbackTail == 0 );
  tree->eTransState = TRANS_INCHECKPOINT;
  return SQLITE_OK;
}
btree_rb.c1373
STATIC INTmemRbtreeCommitCkpt(Rbtree* tree)
static int memRbtreeCommitCkpt(Rbtree* tree)
{
  if( tree->eTransState == TRANS_INCHECKPOINT ){ 
    if( tree->pCheckRollback ){
      tree->pCheckRollbackTail->pNext = tree->pTransRollback;
      tree->pTransRollback = tree->pCheckRollback;
      tree->pCheckRollback = 0;
      tree->pCheckRollbackTail = 0;
    }
    tree->eTransState = TRANS_INTRANSACTION;
  }
  return SQLITE_OK;
}
btree_rb.c1384
STATIC INTmemRbtreeRollbackCkpt(Rbtree* tree)
static int memRbtreeRollbackCkpt(Rbtree* tree)
{
  if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK;
  tree->eTransState = TRANS_ROLLBACK;
  execute_rollback_list(tree, tree->pCheckRollback);
  tree->pCheckRollback = 0;
  tree->pCheckRollbackTail = 0;
  tree->eTransState = TRANS_INTRANSACTION;
  return SQLITE_OK;
}
btree_rb.c1398
STATIC INTmemRbtreePageDump(Rbtree* tree, int pgno, int rec)
static int memRbtreePageDump(Rbtree* tree, int pgno, int rec)
{
  assert(!"Cannot call sqliteRbtreePageDump");
  return SQLITE_OK;
}
btree_rb.c1410
STATIC INTmemRbtreeCursorDump(RbtCursor* pCur, int* aRes)
static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes)
{
  assert(!"Cannot call sqliteRbtreeCursorDump");
  return SQLITE_OK;
}
btree_rb.c1416
STATIC STRUCT PAGER memRbtreePager(Rbtree* tree)
static struct Pager *memRbtreePager(Rbtree* tree)
{
  return 0;
}
btree_rb.c1423
STATIC CONST CHAR memRbtreeGetFilename(Rbtree *pBt)
static const char *memRbtreeGetFilename(Rbtree *pBt){
  return 0;  /* A NULL return indicates there is no underlying file */
}
btree_rb.c1428
STATIC INTmemRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2)
static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){
  return SQLITE_INTERNAL;  /* Not implemented */
}

static BtOps sqliteRbtreeOps = {
    (int(*)(Btree*)) memRbtreeClose,
    (int(*)(Btree*,int)) memRbtreeSetCacheSize,
    (int(*)(Btree*,int)) memRbtreeSetSafetyLevel,
    (int(*)(Btree*)) memRbtreeBeginTrans,
    (int(*)(Btree*)) memRbtreeCommit,
    (int(*)(Btree*)) memRbtreeRollback,
    (int(*)(Btree*)) memRbtreeBeginCkpt,
    (int(*)(Btree*)) memRbtreeCommitCkpt,
    (int(*)(Btree*)) memRbtreeRollbackCkpt,
    (int(*)(Btree*,int*)) memRbtreeCreateTable,
    (int(*)(Btree*,int*)) memRbtreeCreateTable,
    (int(*)(Btree*,int)) memRbtreeDropTable,
    (int(*)(Btree*,int)) memRbtreeClearTable,
    (int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor,
    (int(*)(Btree*,int*)) memRbtreeGetMeta,
    (int(*)(Btree*,int*)) memRbtreeUpdateMeta,
    (char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck,
    (const char*(*)(Btree*)) memRbtreeGetFilename,
    (int(*)(Btree*,Btree*)) memRbtreeCopyFile,
    (struct Pager*(*)(Btree*)) memRbtreePager,
#ifdef SQLITE_TEST
    (int(*)(Btree*,int,int)) memRbtreePageDump,
#endif
};

static BtCursorOps sqliteRbtreeCursorOps = {
    (int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto,
    (int(*)(BtCursor*)) memRbtreeDelete,
    (int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert,
    (int(*)(BtCursor*,int*)) memRbtreeFirst,
    (int(*)(BtCursor*,int*)) memRbtreeLast,
    (int(*)(BtCursor*,int*)) memRbtreeNext,
    (int(*)(BtCursor*,int*)) memRbtreePrevious,
    (int(*)(BtCursor*,int*)) memRbtreeKeySize,
    (int(*)(BtCursor*,int,int,char*)) memRbtreeKey,
    (int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare,
    (int(*)(BtCursor*,int*)) memRbtreeDataSize,
    (int(*)(BtCursor*,int,int,char*)) memRbtreeData,
    (int(*)(BtCursor*)) memRbtreeCloseCursor,
#ifdef SQLITE_TEST
    (int(*)(BtCursor*,int*)) memRbtreeCursorDump,
#endif

};
btree_rb.c1435
build.c
TypeFunctionSourceLine
VOIDsqliteBeginParse(Parse *pParse, int explainFlag)
void sqliteBeginParse(Parse *pParse, int explainFlag){
  sqlite *db = pParse->db;
  int i;
  pParse->explain = explainFlag;
  if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
    int rc = sqliteInit(db, &pParse->zErrMsg);
    if( rc!=SQLITE_OK ){
      pParse->rc = rc;
      pParse->nErr++;
    }
  }
  for(i=0; inDb; i++){
    DbClearProperty(db, i, DB_Locked);
    if( !db->aDb[i].inTrans ){
      DbClearProperty(db, i, DB_Cookie);
    }
  }
  pParse->nVar = 0;
}
build.c31
VOIDsqliteExec(Parse *pParse)
void sqliteExec(Parse *pParse){
  sqlite *db = pParse->db;
  Vdbe *v = pParse->pVdbe;

  if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
    sqliteVdbeAddOp(v, OP_Halt, 0, 0);
  }
  if( sqlite_malloc_failed ) return;
  if( v && pParse->nErr==0 ){
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqliteVdbeTrace(v, trace);
    sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
    pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else if( pParse->rc==SQLITE_OK ){
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
  pParse->nSet = 0;
  pParse->nAgg = 0;
  pParse->nVar = 0;
}
build.c57
TABLE sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase)
Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  for(i=0; inDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
    p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
    if( p ) break;
  }
  return p;
}
build.c91
TABLE sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase)
Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
  Table *p;

  p = sqliteFindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    if( zDbase ){
      sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
    }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
      sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
         zName, zDbase);
    }else{
      sqliteErrorMsg(pParse, "no such table: %s", zName);
    }
  }
  return p;
}
build.c117
INDEX sqliteFindIndex(sqlite *db, const char *zName, const char *zDb)
Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
  Index *p = 0;
  int i;
  for(i=0; inDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
    p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
    if( p ) break;
  }
  return p;
}
build.c145
STATIC VOIDsqliteDeleteIndex(sqlite *db, Index *p)
static void sqliteDeleteIndex(sqlite *db, Index *p){
  Index *pOld;

  assert( db!=0 && p->zName!=0 );
  pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
                          strlen(p->zName)+1, 0);
  if( pOld!=0 && pOld!=p ){
    sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
                     strlen(pOld->zName)+1, pOld);
  }
  sqliteFree(p);
}
build.c169
VOIDsqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex)
void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
  if( pIndex->pTable->pIndex==pIndex ){
    pIndex->pTable->pIndex = pIndex->pNext;
  }else{
    Index *p;
    for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
    if( p && p->pNext==pIndex ){
      p->pNext = pIndex->pNext;
    }
  }
  sqliteDeleteIndex(db, pIndex);
}
build.c190
VOIDsqliteResetInternalSchema(sqlite *db, int iDb)
void sqliteResetInternalSchema(sqlite *db, int iDb){
  HashElem *pElem;
  Hash temp1;
  Hash temp2;
  int i, j;

  assert( iDb>=0 && iDbnDb );
  db->flags &= ~SQLITE_Initialized;
  for(i=iDb; inDb; i++){
    Db *pDb = &db->aDb[i];
    temp1 = pDb->tblHash;
    temp2 = pDb->trigHash;
    sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
    sqliteHashClear(&pDb->aFKey);
    sqliteHashClear(&pDb->idxHash);
    for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
      Trigger *pTrigger = sqliteHashData(pElem);
      sqliteDeleteTrigger(pTrigger);
    }
    sqliteHashClear(&temp2);
    sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
    for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
      Table *pTab = sqliteHashData(pElem);
      sqliteDeleteTable(db, pTab);
    }
    sqliteHashClear(&temp1);
    DbClearProperty(db, i, DB_SchemaLoaded);
    if( iDb>0 ) return;
  }
  assert( iDb==0 );
  db->flags &= ~SQLITE_InternChanges;

  /* If one or more of the auxiliary database files has been closed,
  ** then remove then from the auxiliary database list.  We take the
  ** opportunity to do this here since we have just deleted all of the
  ** schema hash tables and therefore do not have to make any changes
  ** to any of those tables.
  */
  for(i=0; inDb; i++){
    struct Db *pDb = &db->aDb[i];
    if( pDb->pBt==0 ){
      if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
      pDb->pAux = 0;
    }
  }
  for(i=j=2; inDb; i++){
    struct Db *pDb = &db->aDb[i];
    if( pDb->pBt==0 ){
      sqliteFree(pDb->zName);
      pDb->zName = 0;
      continue;
    }
    if( jaDb[j] = db->aDb[i];
    }
    j++;
  }
  memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
  db->nDb = j;
  if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
    memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
    sqliteFree(db->aDb);
    db->aDb = db->aDbStatic;
  }
}
build.c208
VOIDsqliteRollbackInternalChanges(sqlite *db)
void sqliteRollbackInternalChanges(sqlite *db){
  if( db->flags & SQLITE_InternChanges ){
    sqliteResetInternalSchema(db, 0);
  }
}
build.c284
VOIDsqliteCommitInternalChanges(sqlite *db)
void sqliteCommitInternalChanges(sqlite *db){
  db->aDb[0].schema_cookie = db->next_cookie;
  db->flags &= ~SQLITE_InternChanges;
}
build.c295
VOIDsqliteDeleteTable(sqlite *db, Table *pTable)
void sqliteDeleteTable(sqlite *db, Table *pTable){
  int i;
  Index *pIndex, *pNext;
  FKey *pFKey, *pNextFKey;

  if( pTable==0 ) return;

  /* Delete all indices associated with this table
  */
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    pNext = pIndex->pNext;
    assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
    sqliteDeleteIndex(db, pIndex);
  }

  /* Delete all foreign keys associated with this table.  The keys
  ** should have already been unlinked from the db->aFKey hash table 
  */
  for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
    pNextFKey = pFKey->pNextFrom;
    assert( pTable->iDbnDb );
    assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
                           pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
    sqliteFree(pFKey);
  }

  /* Delete the Table structure itself.
  */
  for(i=0; inCol; i++){
    sqliteFree(pTable->aCol[i].zName);
    sqliteFree(pTable->aCol[i].zDflt);
    sqliteFree(pTable->aCol[i].zType);
  }
  sqliteFree(pTable->zName);
  sqliteFree(pTable->aCol);
  sqliteSelectDelete(pTable->pSelect);
  sqliteFree(pTable);
}
build.c303
STATIC VOIDsqliteUnlinkAndDeleteTable(sqlite *db, Table *p)
static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
  Table *pOld;
  FKey *pF1, *pF2;
  int i = p->iDb;
  assert( db!=0 );
  pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
  assert( pOld==0 || pOld==p );
  for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
    int nTo = strlen(pF1->zTo) + 1;
    pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
    if( pF2==pF1 ){
      sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
    }else{
      while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
      if( pF2 ){
        pF2->pNextTo = pF1->pNextTo;
      }
    }
  }
  sqliteDeleteTable(db, p);
}
build.c357
CHAR sqliteTableNameFromToken(Token *pName)
char *sqliteTableNameFromToken(Token *pName){
  char *zName = sqliteStrNDup(pName->z, pName->n);
  sqliteDequote(zName);
  return zName;
}
build.c383
VOIDsqliteOpenMasterTable(Vdbe *v, int isTemp)
void sqliteOpenMasterTable(Vdbe *v, int isTemp){
  sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
  sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
}
build.c395
VOIDsqliteStartTable( Parse *pParse, Token *pStart, Token *pName, int isTemp, int isView )
void sqliteStartTable(
  Parse *pParse,   /* Parser context */
  Token *pStart,   /* The "CREATE" token */
  Token *pName,    /* Name of table or view to create */
  int isTemp,      /* True if this is a TEMP table */
  int isView       /* True if this is a VIEW */
){
  Table *pTable;
  Index *pIdx;
  char *zName;
  sqlite *db = pParse->db;
  Vdbe *v;
  int iDb;

  pParse->sFirstToken = *pStart;
  zName = sqliteTableNameFromToken(pName);
  if( zName==0 ) return;
  if( db->init.iDb==1 ) isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
  assert( (isTemp & 1)==isTemp );
  {
    int code;
    char *zDb = isTemp ? "temp" : "main";
    if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
      sqliteFree(zName);
      return;
    }
    if( isView ){
      if( isTemp ){
        code = SQLITE_CREATE_TEMP_VIEW;
      }else{
        code = SQLITE_CREATE_VIEW;
      }
    }else{
      if( isTemp ){
        code = SQLITE_CREATE_TEMP_TABLE;
      }else{
        code = SQLITE_CREATE_TABLE;
      }
    }
    if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
      sqliteFree(zName);
      return;
    }
  }
#endif
 

  /* Before trying to create a temporary table, make sure the Btree for
  ** holding temporary tables is open.
  */
  if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
    int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
    if( rc!=SQLITE_OK ){
      sqliteErrorMsg(pParse, "unable to open a temporary database "
        "file for storing temporary tables");
      pParse->nErr++;
      return;
    }
    if( db->flags & SQLITE_InTrans ){
      rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
      if( rc!=SQLITE_OK ){
        sqliteErrorMsg(pParse, "unable to get a write lock on "
          "the temporary database file");
        return;
      }
    }
  }

  /* Make sure the new table name does not collide with an existing
  ** index or table name.  Issue an error message if it does.
  **
  ** If we are re-reading the sqlite_master table because of a schema
  ** change and a new permanent table is found whose name collides with
  ** an existing temporary table, that is not an error.
  */
  pTable = sqliteFindTable(db, zName, 0);
  iDb = isTemp ? 1 : db->init.iDb;
  if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
    sqliteErrorMsg(pParse, "table %T already exists", pName);
    sqliteFree(zName);
    return;
  }
  if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
          (pIdx->iDb==0 || !db->init.busy) ){
    sqliteErrorMsg(pParse, "there is already an index named %s", zName);
    sqliteFree(zName);
    return;
  }
  pTable = sqliteMalloc( sizeof(Table) );
  if( pTable==0 ){
    sqliteFree(zName);
    return;
  }
  pTable->zName = zName;
  pTable->nCol = 0;
  pTable->aCol = 0;
  pTable->iPKey = -1;
  pTable->pIndex = 0;
  pTable->iDb = iDb;
  if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
  pParse->pNewTable = pTable;

  /* Begin generating the code that will insert the table record into
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
  ** and allocate the record number for the table entry now.  Before any
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
  ** indices to be created and the table record must come before the 
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
    sqliteBeginWriteOperation(pParse, 0, isTemp);
    if( !isTemp ){
      sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
    }
    sqliteOpenMasterTable(v, isTemp);
    sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
    sqliteVdbeAddOp(v, OP_Dup, 0, 0);
    sqliteVdbeAddOp(v, OP_String, 0, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
  }
}
build.c406
VOIDsqliteAddColumn(Parse *pParse, Token *pName)
void sqliteAddColumn(Parse *pParse, Token *pName){
  Table *p;
  int i;
  char *z = 0;
  Column *pCol;
  if( (p = pParse->pNewTable)==0 ) return;
  sqliteSetNString(&z, pName->z, pName->n, 0);
  if( z==0 ) return;
  sqliteDequote(z);
  for(i=0; inCol; i++){
    if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
      sqliteErrorMsg(pParse, "duplicate column name: %s", z);
      sqliteFree(z);
      return;
    }
  }
  if( (p->nCol & 0x7)==0 ){
    Column *aNew;
    aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
    if( aNew==0 ) return;
    p->aCol = aNew;
  }
  pCol = &p->aCol[p->nCol];
  memset(pCol, 0, sizeof(p->aCol[0]));
  pCol->zName = z;
  pCol->sortOrder = SQLITE_SO_NUM;
  p->nCol++;
}
build.c548
VOIDsqliteAddNotNull(Parse *pParse, int onError)
void sqliteAddNotNull(Parse *pParse, int onError){
  Table *p;
  int i;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i>=0 ) p->aCol[i].notNull = onError;
}
build.c585
VOIDsqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast)
void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
  Table *p;
  int i, j;
  int n;
  char *z, **pz;
  Column *pCol;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i<0 ) return;
  pCol = &p->aCol[i];
  pz = &pCol->zType;
  n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
  sqliteSetNString(pz, pFirst->z, n, 0);
  z = *pz;
  if( z==0 ) return;
  for(i=j=0; z[i]; i++){
    int c = z[i];
    if( isspace(c) ) continue;
    z[j++] = c;
  }
  z[j] = 0;
  if( pParse->db->file_format>=4 ){
    pCol->sortOrder = sqliteCollateType(z, n);
  }else{
    pCol->sortOrder = SQLITE_SO_NUM;
  }
}
build.c599
VOIDsqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag)
void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
  Table *p;
  int i;
  char **pz;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i<0 ) return;
  pz = &p->aCol[i].zDflt;
  if( minusFlag ){
    sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
  }else{
    sqliteSetNString(pz, pVal->z, pVal->n, 0);
  }
  sqliteDequote(*pz);
}
build.c636
VOIDsqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError)
void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
  Table *pTab = pParse->pNewTable;
  char *zType = 0;
  int iCol = -1, i;
  if( pTab==0 ) goto primary_key_exit;
  if( pTab->hasPrimKey ){
    sqliteErrorMsg(pParse, 
      "table \"%s\" has more than one primary key", pTab->zName);
    goto primary_key_exit;
  }
  pTab->hasPrimKey = 1;
  if( pList==0 ){
    iCol = pTab->nCol - 1;
    pTab->aCol[iCol].isPrimKey = 1;
  }else{
    for(i=0; inId; i++){
      for(iCol=0; iColnCol; iCol++){
        if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
      }
      if( iColnCol ) pTab->aCol[iCol].isPrimKey = 1;
    }
    if( pList->nId>1 ) iCol = -1;
  }
  if( iCol>=0 && iColnCol ){
    zType = pTab->aCol[iCol].zType;
  }
  if( pParse->db->file_format>=1 && 
           zType && sqliteStrICmp(zType, "INTEGER")==0 ){
    pTab->iPKey = iCol;
    pTab->keyConf = onError;
  }else{
    sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
    pList = 0;
  }

primary_key_exit:
  sqliteIdListDelete(pList);
  return;
}
build.c660
INTsqliteCollateType(const char *zType, int nType)
int sqliteCollateType(const char *zType, int nType){
  int i;
  for(i=0; i
build.c720
VOIDsqliteAddCollateType(Parse *pParse, int collType)
void sqliteAddCollateType(Parse *pParse, int collType){
  Table *p;
  int i;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i>=0 ) p->aCol[i].sortOrder = collType;
}
build.c745
VOIDsqliteChangeCookie(sqlite *db, Vdbe *v)
void sqliteChangeCookie(sqlite *db, Vdbe *v){
  if( db->next_cookie==db->aDb[0].schema_cookie ){
    unsigned char r;
    sqliteRandomness(1, &r);
    db->next_cookie = db->aDb[0].schema_cookie + r + 1;
    db->flags |= SQLITE_InternChanges;
    sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
    sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
  }
}
build.c759
STATIC INTidentLength(const char *z)
static int identLength(const char *z){
  int n;
  int needQuote = 0;
  for(n=0; *z; n++, z++){
    if( *z=='\'' ){ n++; needQuote=1; }
  }
  return n + needQuote*2;
}
build.c787
STATIC VOIDidentPut(char *z, int *pIdx, char *zIdent)
static void identPut(char *z, int *pIdx, char *zIdent){
  int i, j, needQuote;
  i = *pIdx;
  for(j=0; zIdent[j]; j++){
    if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
  }
  needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
                  || sqliteKeywordCode(zIdent, j)!=TK_ID;
  if( needQuote ) z[i++] = '\'';
  for(j=0; zIdent[j]; j++){
    z[i++] = zIdent[j];
    if( zIdent[j]=='\'' ) z[i++] = '\'';
  }
  if( needQuote ) z[i++] = '\'';
  z[i] = 0;
  *pIdx = i;
}
build.c801
STATIC CHAR createTableStmt(Table *p)
static char *createTableStmt(Table *p){
  int i, k, n;
  char *zStmt;
  char *zSep, *zSep2, *zEnd;
  n = 0;
  for(i=0; inCol; i++){
    n += identLength(p->aCol[i].zName);
  }
  n += identLength(p->zName);
  if( n<40 ){
    zSep = "";
    zSep2 = ",";
    zEnd = ")";
  }else{
    zSep = "\n  ";
    zSep2 = ",\n  ";
    zEnd = "\n)";
  }
  n += 35 + 6*p->nCol;
  zStmt = sqliteMallocRaw( n );
  if( zStmt==0 ) return 0;
  strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
  k = strlen(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(i=0; inCol; i++){
    strcpy(&zStmt[k], zSep);
    k += strlen(&zStmt[k]);
    zSep = zSep2;
    identPut(zStmt, &k, p->aCol[i].zName);
  }
  strcpy(&zStmt[k], zEnd);
  return zStmt;
}
build.c823
VOIDsqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect)
void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
  Table *p;
  sqlite *db = pParse->db;

  if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
  p = pParse->pNewTable;
  if( p==0 ) return;

  /* If the table is generated from a SELECT, then construct the
  ** list of columns and the text of the table.
  */
  if( pSelect ){
    Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
    if( pSelTab==0 ) return;
    assert( p->aCol==0 );
    p->nCol = pSelTab->nCol;
    p->aCol = pSelTab->aCol;
    pSelTab->nCol = 0;
    pSelTab->aCol = 0;
    sqliteDeleteTable(0, pSelTab);
  }

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
  ** should have been put there by the sqliteOpenCb routine.)
  */
  if( db->init.busy ){
    p->tnum = db->init.newTnum;
  }

  /* If not initializing, then create a record for the new table
  ** in the SQLITE_MASTER table of the database.  The record number
  ** for the new table entry should already be on the stack.
  **
  ** If this is a TEMPORARY table, write the entry into the auxiliary
  ** file instead of into the main database file.
  */
  if( !db->init.busy ){
    int n;
    Vdbe *v;

    v = sqliteGetVdbe(pParse);
    if( v==0 ) return;
    if( p->pSelect==0 ){
      /* A regular table */
      sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
    }else{
      /* A view */
      sqliteVdbeAddOp(v, OP_Integer, 0, 0);
    }
    p->tnum = 0;
    sqliteVdbeAddOp(v, OP_Pull, 1, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
    sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
    sqliteVdbeAddOp(v, OP_Dup, 4, 0);
    sqliteVdbeAddOp(v, OP_String, 0, 0);
    if( pSelect ){
      char *z = createTableStmt(p);
      n = z ? strlen(z) : 0;
      sqliteVdbeChangeP3(v, -1, z, n);
      sqliteFree(z);
    }else{
      assert( pEnd!=0 );
      n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
      sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
    }
    sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
    if( !p->iDb ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    if( pSelect ){
      sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
      sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
      pParse->nTab = 2;
      sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
    }
    sqliteEndWriteOperation(pParse);
  }

  /* Add the table to the in-memory representation of the database.
  */
  if( pParse->explain==0 && pParse->nErr==0 ){
    Table *pOld;
    FKey *pFKey;
    pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash, 
                            p->zName, strlen(p->zName)+1, p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
    for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
      int nTo = strlen(pFKey->zTo) + 1;
      pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
      sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
    }
    pParse->pNewTable = 0;
    db->nTable++;
    db->flags |= SQLITE_InternChanges;
  }
}
build.c863
VOIDsqliteCreateView( Parse *pParse, Token *pBegin, Token *pName, Select *pSelect, int isTemp )
void sqliteCreateView(
  Parse *pParse,     /* The parsing context */
  Token *pBegin,     /* The CREATE token that begins the statement */
  Token *pName,      /* The token that holds the name of the view */
  Select *pSelect,   /* A SELECT statement that will become the new view */
  int isTemp         /* TRUE for a TEMPORARY view */
){
  Table *p;
  int n;
  const char *z;
  Token sEnd;
  DbFixer sFix;

  sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
  p = pParse->pNewTable;
  if( p==0 || pParse->nErr ){
    sqliteSelectDelete(pSelect);
    return;
  }
  if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
    && sqliteFixSelect(&sFix, pSelect)
  ){
    sqliteSelectDelete(pSelect);
    return;
  }

  /* Make a copy of the entire SELECT statement that defines the view.
  ** This will force all the Expr.token.z values to be dynamically
  ** allocated rather than point to the input string - which means that
  ** they will persist after the current sqlite_exec() call returns.
  */
  p->pSelect = sqliteSelectDup(pSelect);
  sqliteSelectDelete(pSelect);
  if( !pParse->db->init.busy ){
    sqliteViewGetColumnNames(pParse, p);
  }

  /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
  ** the end.
  */
  sEnd = pParse->sLastToken;
  if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
    sEnd.z += sEnd.n;
  }
  sEnd.n = 0;
  n = sEnd.z - pBegin->z;
  z = pBegin->z;
  while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
  sEnd.z = &z[n-1];
  sEnd.n = 1;

  /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
  sqliteEndTable(pParse, &sEnd, 0);
  return;
}
build.c989
INTsqliteViewGetColumnNames(Parse *pParse, Table *pTable)
int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
  ExprList *pEList;
  Select *pSel;
  Table *pSelTab;
  int nErr = 0;

  assert( pTable );

  /* A positive nCol means the columns names for this view are
  ** already known.
  */
  if( pTable->nCol>0 ) return 0;

  /* A negative nCol is a special marker meaning that we are currently
  ** trying to compute the column names.  If we enter this routine with
  ** a negative nCol, it means two or more views form a loop, like this:
  **
  **     CREATE VIEW one AS SELECT * FROM two;
  **     CREATE VIEW two AS SELECT * FROM one;
  **
  ** Actually, this error is caught previously and so the following test
  ** should always fail.  But we will leave it in place just to be safe.
  */
  if( pTable->nCol<0 ){
    sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
    return 1;
  }

  /* If we get this far, it means we need to compute the table names.
  */
  assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
  pSel = pTable->pSelect;

  /* Note that the call to sqliteResultSetOfSelect() will expand any
  ** "*" elements in this list.  But we will need to restore the list
  ** back to its original configuration afterwards, so we save a copy of
  ** the original in pEList.
  */
  pEList = pSel->pEList;
  pSel->pEList = sqliteExprListDup(pEList);
  if( pSel->pEList==0 ){
    pSel->pEList = pEList;
    return 1;  /* Malloc failed */
  }
  pTable->nCol = -1;
  pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
  if( pSelTab ){
    assert( pTable->aCol==0 );
    pTable->nCol = pSelTab->nCol;
    pTable->aCol = pSelTab->aCol;
    pSelTab->nCol = 0;
    pSelTab->aCol = 0;
    sqliteDeleteTable(0, pSelTab);
    DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
  }else{
    pTable->nCol = 0;
    nErr++;
  }
  sqliteSelectUnbind(pSel);
  sqliteExprListDelete(pSel->pEList);
  pSel->pEList = pEList;
  return nErr;  
}
build.c1048
STATIC VOIDsqliteViewResetColumnNames(Table *pTable)
static void sqliteViewResetColumnNames(Table *pTable){
  int i;
  Column *pCol;
  assert( pTable!=0 && pTable->pSelect!=0 );
  for(i=0, pCol=pTable->aCol; inCol; i++, pCol++){
    sqliteFree(pCol->zName);
    sqliteFree(pCol->zDflt);
    sqliteFree(pCol->zType);
  }
  sqliteFree(pTable->aCol);
  pTable->aCol = 0;
  pTable->nCol = 0;
}
build.c1117
STATIC VOIDsqliteViewResetAll(sqlite *db, int idx)
static void sqliteViewResetAll(sqlite *db, int idx){
  HashElem *i;
  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    if( pTab->pSelect ){
      sqliteViewResetColumnNames(pTab);
    }
  }
  DbClearProperty(db, idx, DB_UnresetViews);
}
build.c1139
TABLE sqliteTableFromToken(Parse *pParse, Token *pTok)
Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
  char *zName;
  Table *pTab;
  zName = sqliteTableNameFromToken(pTok);
  if( zName==0 ) return 0;
  pTab = sqliteFindTable(pParse->db, zName, 0);
  sqliteFree(zName);
  if( pTab==0 ){
    sqliteErrorMsg(pParse, "no such table: %T", pTok);
  }
  return pTab;
}
build.c1154
VOIDsqliteDropTable(Parse *pParse, Token *pName, int isView)
void sqliteDropTable(Parse *pParse, Token *pName, int isView){
  Table *pTable;
  Vdbe *v;
  int base;
  sqlite *db = pParse->db;
  int iDb;

  if( pParse->nErr || sqlite_malloc_failed ) return;
  pTable = sqliteTableFromToken(pParse, pName);
  if( pTable==0 ) return;
  iDb = pTable->iDb;
  assert( iDb>=0 && iDbnDb );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code;
    const char *zTab = SCHEMA_TABLE(pTable->iDb);
    const char *zDb = db->aDb[pTable->iDb].zName;
    if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
      return;
    }
    if( isView ){
      if( iDb==1 ){
        code = SQLITE_DROP_TEMP_VIEW;
      }else{
        code = SQLITE_DROP_VIEW;
      }
    }else{
      if( iDb==1 ){
        code = SQLITE_DROP_TEMP_TABLE;
      }else{
        code = SQLITE_DROP_TABLE;
      }
    }
    if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
      return;
    }
    if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
      return;
    }
  }
#endif
  if( pTable->readOnly ){
    sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
    pParse->nErr++;
    return;
  }
  if( isView && pTable->pSelect==0 ){
    sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
    return;
  }
  if( !isView && pTable->pSelect ){
    sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
    return;
  }

  /* Generate code to remove the table from the master table
  ** on disk.
  */
  v = sqliteGetVdbe(pParse);
  if( v ){
    static VdbeOpList dropTable[] = {
      { OP_Rewind,     0, ADDR(8),  0},
      { OP_String,     0, 0,        0}, /* 1 */
      { OP_MemStore,   1, 1,        0},
      { OP_MemLoad,    1, 0,        0}, /* 3 */
      { OP_Column,     0, 2,        0},
      { OP_Ne,         0, ADDR(7),  0},
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(3),  0}, /* 7 */
    };
    Index *pIdx;
    Trigger *pTrigger;
    sqliteBeginWriteOperation(pParse, 0, pTable->iDb);

    /* Drop all triggers associated with the table being dropped */
    pTrigger = pTable->pTrigger;
    while( pTrigger ){
      assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
      sqliteDropTriggerPtr(pParse, pTrigger, 1);
      if( pParse->explain ){
        pTrigger = pTrigger->pNext;
      }else{
        pTrigger = pTable->pTrigger;
      }
    }

    /* Drop all SQLITE_MASTER entries that refer to the table */
    sqliteOpenMasterTable(v, pTable->iDb);
    base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
    sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);

    /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
    if( pTable->iDb!=1 ){
      sqliteOpenMasterTable(v, 1);
      base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
      sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
    }

    if( pTable->iDb==0 ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
      for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
        sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
      }
    }
    sqliteEndWriteOperation(pParse);
  }

  /* Delete the in-memory description of the table.
  **
  ** Exception: if the SQL statement began with the EXPLAIN keyword,
  ** then no changes should be made.
  */
  if( !pParse->explain ){
    sqliteUnlinkAndDeleteTable(db, pTable);
    db->flags |= SQLITE_InternChanges;
  }
  sqliteViewResetAll(db, iDb);
}
build.c1171
VOIDsqliteAddIdxKeyType(Vdbe *v, Index *pIdx)
void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
  char *zType;
  Table *pTab;
  int i, n;
  assert( pIdx!=0 && pIdx->pTable!=0 );
  pTab = pIdx->pTable;
  n = pIdx->nColumn;
  zType = sqliteMallocRaw( n+1 );
  if( zType==0 ) return;
  for(i=0; iaiColumn[i];
    assert( iCol>=0 && iColnCol );
    if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
      zType[i] = 't';
    }else{
      zType[i] = 'n';
    }
  }
  zType[n] = 0;
  sqliteVdbeChangeP3(v, -1, zType, n);
  sqliteFree(zType);
}
build.c1298
VOIDsqliteCreateForeignKey( Parse *pParse, IdList *pFromCol, Token *pTo, IdList *pToCol, int flags )
void sqliteCreateForeignKey(
  Parse *pParse,       /* Parsing context */
  IdList *pFromCol,    /* Columns in this table that point to other table */
  Token *pTo,          /* Name of the other table */
  IdList *pToCol,      /* Columns in the other table */
  int flags            /* Conflict resolution algorithms. */
){
  Table *p = pParse->pNewTable;
  int nByte;
  int i;
  int nCol;
  char *z;
  FKey *pFKey = 0;

  assert( pTo!=0 );
  if( p==0 || pParse->nErr ) goto fk_end;
  if( pFromCol==0 ){
    int iCol = p->nCol-1;
    if( iCol<0 ) goto fk_end;
    if( pToCol && pToCol->nId!=1 ){
      sqliteErrorMsg(pParse, "foreign key on %s"
         " should reference only one column of table %T",
         p->aCol[iCol].zName, pTo);
      goto fk_end;
    }
    nCol = 1;
  }else if( pToCol && pToCol->nId!=pFromCol->nId ){
    sqliteErrorMsg(pParse,
        "number of columns in foreign key does not match the number of "
        "columns in the referenced table");
    goto fk_end;
  }else{
    nCol = pFromCol->nId;
  }
  nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
  if( pToCol ){
    for(i=0; inId; i++){
      nByte += strlen(pToCol->a[i].zName) + 1;
    }
  }
  pFKey = sqliteMalloc( nByte );
  if( pFKey==0 ) goto fk_end;
  pFKey->pFrom = p;
  pFKey->pNextFrom = p->pFKey;
  z = (char*)&pFKey[1];
  pFKey->aCol = (struct sColMap*)z;
  z += sizeof(struct sColMap)*nCol;
  pFKey->zTo = z;
  memcpy(z, pTo->z, pTo->n);
  z[pTo->n] = 0;
  z += pTo->n+1;
  pFKey->pNextTo = 0;
  pFKey->nCol = nCol;
  if( pFromCol==0 ){
    pFKey->aCol[0].iFrom = p->nCol-1;
  }else{
    for(i=0; inCol; j++){
        if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
          pFKey->aCol[i].iFrom = j;
          break;
        }
      }
      if( j>=p->nCol ){
        sqliteErrorMsg(pParse, 
          "unknown column \"%s\" in foreign key definition", 
          pFromCol->a[i].zName);
        goto fk_end;
      }
    }
  }
  if( pToCol ){
    for(i=0; ia[i].zName);
      pFKey->aCol[i].zCol = z;
      memcpy(z, pToCol->a[i].zName, n);
      z[n] = 0;
      z += n+1;
    }
  }
  pFKey->isDeferred = 0;
  pFKey->deleteConf = flags & 0xff;
  pFKey->updateConf = (flags >> 8 ) & 0xff;
  pFKey->insertConf = (flags >> 16 ) & 0xff;

  /* Link the foreign key to the table as the last step.
  */
  p->pFKey = pFKey;
  pFKey = 0;

fk_end:
  sqliteFree(pFKey);
  sqliteIdListDelete(pFromCol);
  sqliteIdListDelete(pToCol);
}
build.c1331
VOIDsqliteDeferForeignKey(Parse *pParse, int isDeferred)
void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
  Table *pTab;
  FKey *pFKey;
  if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
  pFKey->isDeferred = isDeferred;
}
build.c1446
VOIDsqliteCreateIndex( Parse *pParse, Token *pName, SrcList *pTable, IdList *pList, int onError, Token *pStart, Token *pEnd )
void sqliteCreateIndex(
  Parse *pParse,   /* All information about this parse */
  Token *pName,    /* Name of the index.  May be NULL */
  SrcList *pTable, /* Name of the table to index.  Use pParse->pNewTable if 0 */
  IdList *pList,   /* A list of columns to be indexed */
  int onError,     /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  Token *pStart,   /* The CREATE token that begins a CREATE TABLE statement */
  Token *pEnd      /* The ")" that closes the CREATE INDEX statement */
){
  Table *pTab;     /* Table to be indexed */
  Index *pIndex;   /* The index to be created */
  char *zName = 0;
  int i, j;
  Token nullId;    /* Fake token for an empty ID list */
  DbFixer sFix;    /* For assigning database names to pTable */
  int isTemp;      /* True for a temporary index */
  sqlite *db = pParse->db;

  if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
  if( db->init.busy 
     && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
     && sqliteFixSrcList(&sFix, pTable)
  ){
    goto exit_create_index;
  }

  /*
  ** Find the table that is to be indexed.  Return early if not found.
  */
  if( pTable!=0 ){
    assert( pName!=0 );
    assert( pTable->nSrc==1 );
    pTab =  sqliteSrcListLookup(pParse, pTable);
  }else{
    assert( pName==0 );
    pTab =  pParse->pNewTable;
  }
  if( pTab==0 || pParse->nErr ) goto exit_create_index;
  if( pTab->readOnly ){
    sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
  if( pTab->iDb>=2 && db->init.busy==0 ){
    sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
    goto exit_create_index;
  }
  if( pTab->pSelect ){
    sqliteErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;
  }
  isTemp = pTab->iDb==1;

  /*
  ** Find the name of the index.  Make sure there is not already another
  ** index or table with the same name.  
  **
  ** Exception:  If we are reading the names of permanent indices from the
  ** sqlite_master table (because some other process changed the schema) and
  ** one of the index names collides with the name of a temporary table or
  ** index, then we will continue to process this index.
  **
  ** If pName==0 it means that we are
  ** dealing with a primary key or UNIQUE constraint.  We have to invent our
  ** own name.
  */
  if( pName && !db->init.busy ){
    Index *pISameName;    /* Another index with the same name */
    Table *pTSameName;    /* A table with same name as the index */
    zName = sqliteTableNameFromToken(pName);
    if( zName==0 ) goto exit_create_index;
    if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
      sqliteErrorMsg(pParse, "index %s already exists", zName);
      goto exit_create_index;
    }
    if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
      sqliteErrorMsg(pParse, "there is already a table named %s", zName);
      goto exit_create_index;
    }
  }else if( pName==0 ){
    char zBuf[30];
    int n;
    Index *pLoop;
    for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
    sprintf(zBuf,"%d)",n);
    zName = 0;
    sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
    if( zName==0 ) goto exit_create_index;
  }else{
    zName = sqliteTableNameFromToken(pName);
  }

  /* Check for authorization to create an index.
  */
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    const char *zDb = db->aDb[pTab->iDb].zName;

    assert( pTab->iDb==db->init.iDb || isTemp );
    if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
      goto exit_create_index;
    }
    i = SQLITE_CREATE_INDEX;
    if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
    if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
      goto exit_create_index;
    }
  }
#endif

  /* If pList==0, it means this routine was called to make a primary
  ** key out of the last column added to the table under construction.
  ** So create a fake list to simulate this.
  */
  if( pList==0 ){
    nullId.z = pTab->aCol[pTab->nCol-1].zName;
    nullId.n = strlen(nullId.z);
    pList = sqliteIdListAppend(0, &nullId);
    if( pList==0 ) goto exit_create_index;
  }

  /* 
  ** Allocate the index structure. 
  */
  pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
                        sizeof(int)*pList->nId );
  if( pIndex==0 ) goto exit_create_index;
  pIndex->aiColumn = (int*)&pIndex[1];
  pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
  strcpy(pIndex->zName, zName);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nId;
  pIndex->onError = onError;
  pIndex->autoIndex = pName==0;
  pIndex->iDb = isTemp ? 1 : db->init.iDb;

  /* Scan the names of the columns of the table to be indexed and
  ** load the column indices into the Index structure.  Report an error
  ** if any column is not found.
  */
  for(i=0; inId; i++){
    for(j=0; jnCol; j++){
      if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
    }
    if( j>=pTab->nCol ){
      sqliteErrorMsg(pParse, "table %s has no column named %s",
        pTab->zName, pList->a[i].zName);
      sqliteFree(pIndex);
      goto exit_create_index;
    }
    pIndex->aiColumn[i] = j;
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( !pParse->explain ){
    Index *p;
    p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash, 
                         pIndex->zName, strlen(pIndex->zName)+1, pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      sqliteFree(pIndex);
      goto exit_create_index;
    }
    db->flags |= SQLITE_InternChanges;
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct operation of UPDATE
  ** and INSERT.
  */
  if( onError!=OE_Replace || pTab->pIndex==0
       || pTab->pIndex->onError==OE_Replace){
    pIndex->pNext = pTab->pIndex;
    pTab->pIndex = pIndex;
  }else{
    Index *pOther = pTab->pIndex;
    while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
      pOther = pOther->pNext;
    }
    pIndex->pNext = pOther->pNext;
    pOther->pNext = pIndex;
  }

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" table on the disk.  So do not write to the disk
  ** again.  Extract the table number from the db->init.newTnum field.
  */
  if( db->init.busy && pTable!=0 ){
    pIndex->tnum = db->init.newTnum;
  }

  /* If the db->init.busy is 0 then create the index on disk.  This
  ** involves writing the index into the master table and filling in the
  ** index with the current table contents.
  **
  ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
  ** command.  db->init.busy is 1 when a database is opened and 
  ** CREATE INDEX statements are read out of the master table.  In
  ** the latter case the index already exists on disk, which is why
  ** we don't want to recreate it.
  **
  ** If pTable==0 it means this index is generated as a primary key
  ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
  ** has just been created, it contains no data and the index initialization
  ** step can be skipped.
  */
  else if( db->init.busy==0 ){
    int n;
    Vdbe *v;
    int lbl1, lbl2;
    int i;
    int addr;

    v = sqliteGetVdbe(pParse);
    if( v==0 ) goto exit_create_index;
    if( pTable!=0 ){
      sqliteBeginWriteOperation(pParse, 0, isTemp);
      sqliteOpenMasterTable(v, isTemp);
    }
    sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
    sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
    sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
    pIndex->tnum = 0;
    if( pTable ){
      sqliteVdbeCode(v,
          OP_Dup,       0,      0,
          OP_Integer,   isTemp, 0,
          OP_OpenWrite, 1,      0,
      0);
    }
    addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
    if( pStart && pEnd ){
      n = Addr(pEnd->z) - Addr(pStart->z) + 1;
      sqliteVdbeChangeP3(v, addr, pStart->z, n);
    }
    sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
    if( pTable ){
      sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
      sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
      lbl2 = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
      lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
      for(i=0; inColumn; i++){
        int iCol = pIndex->aiColumn[i];
        if( pTab->iPKey==iCol ){
          sqliteVdbeAddOp(v, OP_Dup, i, 0);
        }else{
          sqliteVdbeAddOp(v, OP_Column, 2, iCol);
        }
      }
      sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
      if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
      sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
                      "indexed columns are not unique", P3_STATIC);
      sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
      sqliteVdbeResolveLabel(v, lbl2);
      sqliteVdbeAddOp(v, OP_Close, 2, 0);
      sqliteVdbeAddOp(v, OP_Close, 1, 0);
    }
    if( pTable!=0 ){
      if( !isTemp ){
        sqliteChangeCookie(db, v);
      }
      sqliteVdbeAddOp(v, OP_Close, 0, 0);
      sqliteEndWriteOperation(pParse);
    }
  }

  /* Clean up before exiting */
exit_create_index:
  sqliteIdListDelete(pList);
  sqliteSrcListDelete(pTable);
  sqliteFree(zName);
  return;
}
build.c1460
VOIDsqliteDropIndex(Parse *pParse, SrcList *pName)
void sqliteDropIndex(Parse *pParse, SrcList *pName){
  Index *pIndex;
  Vdbe *v;
  sqlite *db = pParse->db;

  if( pParse->nErr || sqlite_malloc_failed ) return;
  assert( pName->nSrc==1 );
  pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
  if( pIndex==0 ){
    sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
    goto exit_drop_index;
  }
  if( pIndex->autoIndex ){
    sqliteErrorMsg(pParse, "index associated with UNIQUE "
      "or PRIMARY KEY constraint cannot be dropped", 0);
    goto exit_drop_index;
  }
  if( pIndex->iDb>1 ){
    sqliteErrorMsg(pParse, "cannot alter schema of attached "
       "databases", 0);
    goto exit_drop_index;
  }
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_INDEX;
    Table *pTab = pIndex->pTable;
    const char *zDb = db->aDb[pIndex->iDb].zName;
    const char *zTab = SCHEMA_TABLE(pIndex->iDb);
    if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      goto exit_drop_index;
    }
    if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
    if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
      goto exit_drop_index;
    }
  }
#endif

  /* Generate code to remove the index and from the master table */
  v = sqliteGetVdbe(pParse);
  if( v ){
    static VdbeOpList dropIndex[] = {
      { OP_Rewind,     0, ADDR(9), 0}, 
      { OP_String,     0, 0,       0}, /* 1 */
      { OP_MemStore,   1, 1,       0},
      { OP_MemLoad,    1, 0,       0}, /* 3 */
      { OP_Column,     0, 1,       0},
      { OP_Eq,         0, ADDR(8), 0},
      { OP_Next,       0, ADDR(3), 0},
      { OP_Goto,       0, ADDR(9), 0},
      { OP_Delete,     0, 0,       0}, /* 8 */
    };
    int base;

    sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
    sqliteOpenMasterTable(v, pIndex->iDb);
    base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
    sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
    if( pIndex->iDb==0 ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
    sqliteEndWriteOperation(pParse);
  }

  /* Delete the in-memory description of this index.
  */
  if( !pParse->explain ){
    sqliteUnlinkAndDeleteIndex(db, pIndex);
    db->flags |= SQLITE_InternChanges;
  }

exit_drop_index:
  sqliteSrcListDelete(pName);
}
build.c1753
IDLIST sqliteIdListAppend(IdList *pList, Token *pToken)
IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(IdList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 0;
  }
  if( pList->nId>=pList->nAlloc ){
    struct IdList_item *a;
    pList->nAlloc = pList->nAlloc*2 + 5;
    a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
    if( a==0 ){
      sqliteIdListDelete(pList);
      return 0;
    }
    pList->a = a;
  }
  memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
  if( pToken ){
    char **pz = &pList->a[pList->nId].zName;
    sqliteSetNString(pz, pToken->z, pToken->n, 0);
    if( *pz==0 ){
      sqliteIdListDelete(pList);
      return 0;
    }else{
      sqliteDequote(*pz);
    }
  }
  pList->nId++;
  return pList;
}
build.c1834
SRCLIST sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase)
SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(SrcList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 1;
  }
  if( pList->nSrc>=pList->nAlloc ){
    SrcList *pNew;
    pList->nAlloc *= 2;
    pNew = sqliteRealloc(pList,
               sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
    if( pNew==0 ){
      sqliteSrcListDelete(pList);
      return 0;
    }
    pList = pNew;
  }
  memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
  if( pDatabase && pDatabase->z==0 ){
    pDatabase = 0;
  }
  if( pDatabase && pTable ){
    Token *pTemp = pDatabase;
    pDatabase = pTable;
    pTable = pTemp;
  }
  if( pTable ){
    char **pz = &pList->a[pList->nSrc].zName;
    sqliteSetNString(pz, pTable->z, pTable->n, 0);
    if( *pz==0 ){
      sqliteSrcListDelete(pList);
      return 0;
    }else{
      sqliteDequote(*pz);
    }
  }
  if( pDatabase ){
    char **pz = &pList->a[pList->nSrc].zDatabase;
    sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
    if( *pz==0 ){
      sqliteSrcListDelete(pList);
      return 0;
    }else{
      sqliteDequote(*pz);
    }
  }
  pList->a[pList->nSrc].iCursor = -1;
  pList->nSrc++;
  return pList;
}
build.c1871
VOIDsqliteSrcListAssignCursors(Parse *pParse, SrcList *pList)
void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
  int i;
  for(i=0; inSrc; i++){
    if( pList->a[i].iCursor<0 ){
      pList->a[i].iCursor = pParse->nTab++;
    }
  }
}
build.c1947
VOIDsqliteSrcListAddAlias(SrcList *pList, Token *pToken)
void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
  if( pList && pList->nSrc>0 ){
    int i = pList->nSrc - 1;
    sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
    sqliteDequote(pList->a[i].zAlias);
  }
}
build.c1959
VOIDsqliteIdListDelete(IdList *pList)
void sqliteIdListDelete(IdList *pList){
  int i;
  if( pList==0 ) return;
  for(i=0; inId; i++){
    sqliteFree(pList->a[i].zName);
  }
  sqliteFree(pList->a);
  sqliteFree(pList);
}
build.c1970
INTsqliteIdListIndex(IdList *pList, const char *zName)
int sqliteIdListIndex(IdList *pList, const char *zName){
  int i;
  if( pList==0 ) return -1;
  for(i=0; inId; i++){
    if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
  }
  return -1;
}
build.c1983
VOIDsqliteSrcListDelete(SrcList *pList)
void sqliteSrcListDelete(SrcList *pList){
  int i;
  if( pList==0 ) return;
  for(i=0; inSrc; i++){
    sqliteFree(pList->a[i].zDatabase);
    sqliteFree(pList->a[i].zName);
    sqliteFree(pList->a[i].zAlias);
    if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
      sqliteDeleteTable(0, pList->a[i].pTab);
    }
    sqliteSelectDelete(pList->a[i].pSelect);
    sqliteExprDelete(pList->a[i].pOn);
    sqliteIdListDelete(pList->a[i].pUsing);
  }
  sqliteFree(pList);
}
build.c1996
VOIDsqliteBeginTransaction(Parse *pParse, int onError)
void sqliteBeginTransaction(Parse *pParse, int onError){
  sqlite *db;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || sqlite_malloc_failed ) return;
  if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
  if( db->flags & SQLITE_InTrans ){
    sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
    return;
  }
  sqliteBeginWriteOperation(pParse, 0, 0);
  if( !pParse->explain ){
    db->flags |= SQLITE_InTrans;
    db->onError = onError;
  }
}
build.c2016
VOIDsqliteCommitTransaction(Parse *pParse)
void sqliteCommitTransaction(Parse *pParse){
  sqlite *db;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || sqlite_malloc_failed ) return;
  if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
  if( (db->flags & SQLITE_InTrans)==0 ){
    sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
    return;
  }
  if( !pParse->explain ){
    db->flags &= ~SQLITE_InTrans;
  }
  sqliteEndWriteOperation(pParse);
  if( !pParse->explain ){
    db->onError = OE_Default;
  }
}
build.c2036
VOIDsqliteRollbackTransaction(Parse *pParse)
void sqliteRollbackTransaction(Parse *pParse){
  sqlite *db;
  Vdbe *v;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || sqlite_malloc_failed ) return;
  if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
  if( (db->flags & SQLITE_InTrans)==0 ){
    sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
    return; 
  }
  v = sqliteGetVdbe(pParse);
  if( v ){
    sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
  }
  if( !pParse->explain ){
    db->flags &= ~SQLITE_InTrans;
    db->onError = OE_Default;
  }
}
build.c2058
VOIDsqliteCodeVerifySchema(Parse *pParse, int iDb)
void sqliteCodeVerifySchema(Parse *pParse, int iDb){
  sqlite *db = pParse->db;
  Vdbe *v = sqliteGetVdbe(pParse);
  assert( iDb>=0 && iDbnDb );
  assert( db->aDb[iDb].pBt!=0 );
  if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
    sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
    DbSetProperty(db, iDb, DB_Cookie);
  }
}
build.c2082
VOIDsqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb)
void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
  Vdbe *v;
  sqlite *db = pParse->db;
  if( DbHasProperty(db, iDb, DB_Locked) ) return;
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return;
  if( !db->aDb[iDb].inTrans ){
    sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
    DbSetProperty(db, iDb, DB_Locked);
    sqliteCodeVerifySchema(pParse, iDb);
    if( iDb!=1 ){
      sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
    }
  }else if( setCheckpoint ){
    sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
    DbSetProperty(db, iDb, DB_Locked);
  }
}
build.c2097
VOIDsqliteEndWriteOperation(Parse *pParse)
void sqliteEndWriteOperation(Parse *pParse){
  Vdbe *v;
  sqlite *db = pParse->db;
  if( pParse->trigStack ) return; /* if this is in a trigger */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return;
  if( db->flags & SQLITE_InTrans ){
    /* A BEGIN has executed.  Do not commit until we see an explicit
    ** COMMIT statement. */
  }else{
    sqliteVdbeAddOp(v, OP_Commit, 0, 0);
  }
}
build.c2134
copy.c
TypeFunctionSourceLine
VOIDsqliteCopy( Parse *pParse, SrcList *pTableName, Token *pFilename, Token *pDelimiter, int onError )
void sqliteCopy(
  Parse *pParse,       /* The parser context */
  SrcList *pTableName, /* The name of the table into which we will insert */
  Token *pFilename,    /* The file from which to obtain information */
  Token *pDelimiter,   /* Use this as the field delimiter */
  int onError          /* What to do if a constraint fails */
){
  Table *pTab;
  int i;
  Vdbe *v;
  int addr, end;
  char *zFile = 0;
  const char *zDb;
  sqlite *db = pParse->db;


  if( sqlite_malloc_failed  ) goto copy_cleanup;
  assert( pTableName->nSrc==1 );
  pTab = sqliteSrcListLookup(pParse, pTableName);
  if( pTab==0 || sqliteIsReadOnly(pParse, pTab, 0) ) goto copy_cleanup;
  zFile = sqliteStrNDup(pFilename->z, pFilename->n);
  sqliteDequote(zFile);
  assert( pTab->iDbnDb );
  zDb = db->aDb[pTab->iDb].zName;
  if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb)
      || sqliteAuthCheck(pParse, SQLITE_COPY, pTab->zName, zFile, zDb) ){
    goto copy_cleanup;
  }
  v = sqliteGetVdbe(pParse);
  if( v ){
    sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
    addr = sqliteVdbeOp3(v, OP_FileOpen, 0, 0, pFilename->z, pFilename->n);
    sqliteVdbeDequoteP3(v, addr);
    sqliteOpenTableAndIndices(pParse, pTab, 0);
    if( db->flags & SQLITE_CountRows ){
      sqliteVdbeAddOp(v, OP_Integer, 0, 0);  /* Initialize the row count */
    }
    end = sqliteVdbeMakeLabel(v);
    addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end);
    if( pDelimiter ){
      sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n);
      sqliteVdbeDequoteP3(v, addr);
    }else{
      sqliteVdbeChangeP3(v, addr, "\t", 1);
    }
    if( pTab->iPKey>=0 ){
      sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0);
      sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
    }else{
      sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
    }
    for(i=0; inCol; i++){
      if( i==pTab->iPKey ){
        /* The integer primary key column is filled with NULL since its
        ** value is always pulled from the record number */
        sqliteVdbeAddOp(v, OP_String, 0, 0);
      }else{
        sqliteVdbeAddOp(v, OP_FileColumn, i, 0);
      }
    }
    sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, pTab->iPKey>=0, 
                                   0, onError, addr);
    sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0, -1);
    if( (db->flags & SQLITE_CountRows)!=0 ){
      sqliteVdbeAddOp(v, OP_AddImm, 1, 0);  /* Increment row count */
    }
    sqliteVdbeAddOp(v, OP_Goto, 0, addr);
    sqliteVdbeResolveLabel(v, end);
    sqliteVdbeAddOp(v, OP_Noop, 0, 0);
    sqliteEndWriteOperation(pParse);
    if( db->flags & SQLITE_CountRows ){
      sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
      sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
      sqliteVdbeAddOp(v, OP_Callback, 1, 0);
    }
  }
  
copy_cleanup:
  sqliteSrcListDelete(pTableName);
  sqliteFree(zFile);
  return;
}
copy.c18
date.c
TypeFunctionSourceLine
STATIC INTgetDigits(const char *zDate, ...)
static int getDigits(const char *zDate, ...){
  va_list ap;
  int val;
  int N;
  int min;
  int max;
  int nextC;
  int *pVal;
  int cnt = 0;
  va_start(ap, zDate);
  do{
    N = va_arg(ap, int);
    min = va_arg(ap, int);
    max = va_arg(ap, int);
    nextC = va_arg(ap, int);
    pVal = va_arg(ap, int*);
    val = 0;
    while( N-- ){
      if( !isdigit(*zDate) ){
        return cnt;
      }
      val = val*10 + *zDate - '0';
      zDate++;
    }
    if( valmax || (nextC!=0 && nextC!=*zDate) ){
      return cnt;
    }
    *pVal = val;
    zDate++;
    cnt++;
  }while( nextC );
  return cnt;
}
date.c76
STATIC INTgetValue(const char *z, double *pR)
static int getValue(const char *z, double *pR){
  const char *zEnd;
  *pR = sqliteAtoF(z, &zEnd);
  return zEnd - z;
}
date.c123
STATIC INTparseTimezone(const char *zDate, DateTime *p)
static int parseTimezone(const char *zDate, DateTime *p){
  int sgn = 0;
  int nHr, nMn;
  while( isspace(*zDate) ){ zDate++; }
  p->tz = 0;
  if( *zDate=='-' ){
    sgn = -1;
  }else if( *zDate=='+' ){
    sgn = +1;
  }else{
    return *zDate!=0;
  }
  zDate++;
  if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
    return 1;
  }
  zDate += 5;
  p->tz = sgn*(nMn + nHr*60);
  while( isspace(*zDate) ){ zDate++; }
  return *zDate!=0;
}
date.c133
STATIC INTparseHhMmSs(const char *zDate, DateTime *p)
static int parseHhMmSs(const char *zDate, DateTime *p){
  int h, m, s;
  double ms = 0.0;
  if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
    return 1;
  }
  zDate += 5;
  if( *zDate==':' ){
    zDate++;
    if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
      return 1;
    }
    zDate += 2;
    if( *zDate=='.' && isdigit(zDate[1]) ){
      double rScale = 1.0;
      zDate++;
      while( isdigit(*zDate) ){
        ms = ms*10.0 + *zDate - '0';
        rScale *= 10.0;
        zDate++;
      }
      ms /= rScale;
    }
  }else{
    s = 0;
  }
  p->validJD = 0;
  p->validHMS = 1;
  p->h = h;
  p->m = m;
  p->s = s + ms;
  if( parseTimezone(zDate, p) ) return 1;
  p->validTZ = p->tz!=0;
  return 0;
}
date.c167
STATIC VOIDcomputeJD(DateTime *p)
static void computeJD(DateTime *p){
  int Y, M, D, A, B, X1, X2;

  if( p->validJD ) return;
  if( p->validYMD ){
    Y = p->Y;
    M = p->M;
    D = p->D;
  }else{
    Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
    M = 1;
    D = 1;
  }
  if( M<=2 ){
    Y--;
    M += 12;
  }
  A = Y/100;
  B = 2 - A + (A/4);
  X1 = 365.25*(Y+4716);
  X2 = 30.6001*(M+1);
  p->rJD = X1 + X2 + D + B - 1524.5;
  p->validJD = 1;
  p->validYMD = 0;
  if( p->validHMS ){
    p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
    if( p->validTZ ){
      p->rJD += p->tz*60/86400.0;
      p->validHMS = 0;
      p->validTZ = 0;
    }
  }
}
date.c210
STATIC INTparseYyyyMmDd(const char *zDate, DateTime *p)
static int parseYyyyMmDd(const char *zDate, DateTime *p){
  int Y, M, D, neg;

  if( zDate[0]=='-' ){
    zDate++;
    neg = 1;
  }else{
    neg = 0;
  }
  if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
    return 1;
  }
  zDate += 10;
  while( isspace(*zDate) ){ zDate++; }
  if( parseHhMmSs(zDate, p)==0 ){
    /* We got the time */
  }else if( *zDate==0 ){
    p->validHMS = 0;
  }else{
    return 1;
  }
  p->validJD = 0;
  p->validYMD = 1;
  p->Y = neg ? -Y : Y;
  p->M = M;
  p->D = D;
  if( p->validTZ ){
    computeJD(p);
  }
  return 0;
}
date.c250
STATIC INTparseDateOrTime(const char *zDate, DateTime *p)
static int parseDateOrTime(const char *zDate, DateTime *p){
  memset(p, 0, sizeof(*p));
  if( parseYyyyMmDd(zDate,p)==0 ){
    return 0;
  }else if( parseHhMmSs(zDate, p)==0 ){
    return 0;
  }else if( sqliteStrICmp(zDate,"now")==0){
    double r;
    if( sqliteOsCurrentTime(&r)==0 ){
      p->rJD = r;
      p->validJD = 1;
      return 0;
    }
    return 1;
  }else if( sqliteIsNumber(zDate) ){
    p->rJD = sqliteAtoF(zDate, 0);
    p->validJD = 1;
    return 0;
  }
  return 1;
}
date.c294
STATIC VOIDcomputeYMD(DateTime *p)
static void computeYMD(DateTime *p){
  int Z, A, B, C, D, E, X1;
  if( p->validYMD ) return;
  if( !p->validJD ){
    p->Y = 2000;
    p->M = 1;
    p->D = 1;
  }else{
    Z = p->rJD + 0.5;
    A = (Z - 1867216.25)/36524.25;
    A = Z + 1 + A - (A/4);
    B = A + 1524;
    C = (B - 122.1)/365.25;
    D = 365.25*C;
    E = (B-D)/30.6001;
    X1 = 30.6001*E;
    p->D = B - D - X1;
    p->M = E<14 ? E-1 : E-13;
    p->Y = p->M>2 ? C - 4716 : C - 4715;
  }
  p->validYMD = 1;
}
date.c332
STATIC VOIDcomputeHMS(DateTime *p)
static void computeHMS(DateTime *p){
  int Z, s;
  if( p->validHMS ) return;
  Z = p->rJD + 0.5;
  s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
  p->s = 0.001*s;
  s = p->s;
  p->s -= s;
  p->h = s/3600;
  s -= p->h*3600;
  p->m = s/60;
  p->s += s - p->m*60;
  p->validHMS = 1;
}
date.c358
STATIC VOIDcomputeYMD_HMS(DateTime *p)
static void computeYMD_HMS(DateTime *p){
  computeYMD(p);
  computeHMS(p);
}
date.c376
STATIC VOIDclearYMD_HMS_TZ(DateTime *p)
static void clearYMD_HMS_TZ(DateTime *p){
  p->validYMD = 0;
  p->validHMS = 0;
  p->validTZ = 0;
}
date.c384
STATIC DOUBLElocaltimeOffset(DateTime *p)
static double localtimeOffset(DateTime *p){
  DateTime x, y;
  time_t t;
  struct tm *pTm;
  x = *p;
  computeYMD_HMS(&x);
  if( x.Y<1971 || x.Y>=2038 ){
    x.Y = 2000;
    x.M = 1;
    x.D = 1;
    x.h = 0;
    x.m = 0;
    x.s = 0.0;
  } else {
    int s = x.s + 0.5;
    x.s = s;
  }
  x.tz = 0;
  x.validJD = 0;
  computeJD(&x);
  t = (x.rJD-2440587.5)*86400.0 + 0.5;
  sqliteOsEnterMutex();
  pTm = localtime(&t);
  y.Y = pTm->tm_year + 1900;
  y.M = pTm->tm_mon + 1;
  y.D = pTm->tm_mday;
  y.h = pTm->tm_hour;
  y.m = pTm->tm_min;
  y.s = pTm->tm_sec;
  sqliteOsLeaveMutex();
  y.validYMD = 1;
  y.validHMS = 1;
  y.validJD = 0;
  y.validTZ = 0;
  computeJD(&y);
  return y.rJD - x.rJD;
}
date.c393
STATIC INTparseModifier(const char *zMod, DateTime *p)
static int parseModifier(const char *zMod, DateTime *p){
  int rc = 1;
  int n;
  double r;
  char *z, zBuf[30];
  z = zBuf;
  for(n=0; nrJD += localtimeOffset(p);
        clearYMD_HMS_TZ(p);
        rc = 0;
      }
      break;
    }
    case 'u': {
      /*
      **    unixepoch
      **
      ** Treat the current value of p->rJD as the number of
      ** seconds since 1970.  Convert to a real julian day number.
      */
      if( strcmp(z, "unixepoch")==0 && p->validJD ){
        p->rJD = p->rJD/86400.0 + 2440587.5;
        clearYMD_HMS_TZ(p);
        rc = 0;
      }else if( strcmp(z, "utc")==0 ){
        double c1;
        computeJD(p);
        c1 = localtimeOffset(p);
        p->rJD -= c1;
        clearYMD_HMS_TZ(p);
        p->rJD += c1 - localtimeOffset(p);
        rc = 0;
      }
      break;
    }
    case 'w': {
      /*
      **    weekday N
      **
      ** Move the date to the same time on the next occurrance of
      ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
      ** date is already on the appropriate weekday, this is a no-op.
      */
      if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
                 && (n=r)==r && n>=0 && r<7 ){
        int Z;
        computeYMD_HMS(p);
        p->validTZ = 0;
        p->validJD = 0;
        computeJD(p);
        Z = p->rJD + 1.5;
        Z %= 7;
        if( Z>n ) Z -= 7;
        p->rJD += n - Z;
        clearYMD_HMS_TZ(p);
        rc = 0;
      }
      break;
    }
    case 's': {
      /*
      **    start of TTTTT
      **
      ** Move the date backwards to the beginning of the current day,
      ** or month or year.
      */
      if( strncmp(z, "start of ", 9)!=0 ) break;
      z += 9;
      computeYMD(p);
      p->validHMS = 1;
      p->h = p->m = 0;
      p->s = 0.0;
      p->validTZ = 0;
      p->validJD = 0;
      if( strcmp(z,"month")==0 ){
        p->D = 1;
        rc = 0;
      }else if( strcmp(z,"year")==0 ){
        computeYMD(p);
        p->M = 1;
        p->D = 1;
        rc = 0;
      }else if( strcmp(z,"day")==0 ){
        rc = 0;
      }
      break;
    }
    case '+':
    case '-':
    case '0':
    case '1':
    case '2':
    case '3':
    case '4':
    case '5':
    case '6':
    case '7':
    case '8':
    case '9': {
      n = getValue(z, &r);
      if( n<=0 ) break;
      if( z[n]==':' ){
        /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
        ** specified number of hours, minutes, seconds, and fractional seconds
        ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
        ** omitted.
        */
        const char *z2 = z;
        DateTime tx;
        int day;
        if( !isdigit(*z2) ) z2++;
        memset(&tx, 0, sizeof(tx));
        if( parseHhMmSs(z2, &tx) ) break;
        computeJD(&tx);
        tx.rJD -= 0.5;
        day = (int)tx.rJD;
        tx.rJD -= day;
        if( z[0]=='-' ) tx.rJD = -tx.rJD;
        computeJD(p);
        clearYMD_HMS_TZ(p);
       p->rJD += tx.rJD;
        rc = 0;
        break;
      }
      z += n;
      while( isspace(z[0]) ) z++;
      n = strlen(z);
      if( n>10 || n<3 ) break;
      if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
      computeJD(p);
      rc = 0;
      if( n==3 && strcmp(z,"day")==0 ){
        p->rJD += r;
      }else if( n==4 && strcmp(z,"hour")==0 ){
        p->rJD += r/24.0;
      }else if( n==6 && strcmp(z,"minute")==0 ){
        p->rJD += r/(24.0*60.0);
      }else if( n==6 && strcmp(z,"second")==0 ){
        p->rJD += r/(24.0*60.0*60.0);
      }else if( n==5 && strcmp(z,"month")==0 ){
        int x, y;
        computeYMD_HMS(p);
        p->M += r;
        x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
        p->Y += x;
        p->M -= x*12;
        p->validJD = 0;
        computeJD(p);
        y = r;
        if( y!=r ){
          p->rJD += (r - y)*30.0;
        }
      }else if( n==4 && strcmp(z,"year")==0 ){
        computeYMD_HMS(p);
        p->Y += r;
        p->validJD = 0;
        computeJD(p);
      }else{
        rc = 1;
      }
      clearYMD_HMS_TZ(p);
      break;
    }
    default: {
      break;
    }
  }
  return rc;
}
date.c435
STATIC INTisDate(int argc, const char **argv, DateTime *p)
static int isDate(int argc, const char **argv, DateTime *p){
  int i;
  if( argc==0 ) return 1;
  if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
  for(i=1; i
date.c638
STATIC VOIDjuliandayFunc(sqlite_func *context, int argc, const char **argv)
static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
  DateTime x;
  if( isDate(argc, argv, &x)==0 ){
    computeJD(&x);
    sqlite_set_result_double(context, x.rJD);
  }
}
date.c660
STATIC VOIDdatetimeFunc(sqlite_func *context, int argc, const char **argv)
static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
  DateTime x;
  if( isDate(argc, argv, &x)==0 ){
    char zBuf[100];
    computeYMD_HMS(&x);
    sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
           (int)(x.s));
    sqlite_set_result_string(context, zBuf, -1);
  }
}
date.c673
STATIC VOIDtimeFunc(sqlite_func *context, int argc, const char **argv)
static void timeFunc(sqlite_func *context, int argc, const char **argv){
  DateTime x;
  if( isDate(argc, argv, &x)==0 ){
    char zBuf[100];
    computeHMS(&x);
    sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
    sqlite_set_result_string(context, zBuf, -1);
  }
}
date.c689
STATIC VOIDdateFunc(sqlite_func *context, int argc, const char **argv)
static void dateFunc(sqlite_func *context, int argc, const char **argv){
  DateTime x;
  if( isDate(argc, argv, &x)==0 ){
    char zBuf[100];
    computeYMD(&x);
    sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
    sqlite_set_result_string(context, zBuf, -1);
  }
}
date.c704
STATIC VOIDstrftimeFunc(sqlite_func *context, int argc, const char **argv)
static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
  DateTime x;
  int n, i, j;
  char *z;
  const char *zFmt = argv[0];
  char zBuf[100];
  if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
  for(i=0, n=1; zFmt[i]; i++, n++){
    if( zFmt[i]=='%' ){
      switch( zFmt[i+1] ){
        case 'd':
        case 'H':
        case 'm':
        case 'M':
        case 'S':
        case 'W':
          n++;
          /* fall thru */
        case 'w':
        case '%':
          break;
        case 'f':
          n += 8;
          break;
        case 'j':
          n += 3;
          break;
        case 'Y':
          n += 8;
          break;
        case 's':
        case 'J':
          n += 50;
          break;
        default:
          return;  /* ERROR.  return a NULL */
      }
      i++;
    }
  }
  if( n
date.c719
VOIDsqliteRegisterDateTimeFunctions(sqlite *db)
void sqliteRegisterDateTimeFunctions(sqlite *db){
#ifndef SQLITE_OMIT_DATETIME_FUNCS
  static struct {
     char *zName;
     int nArg;
     int dataType;
     void (*xFunc)(sqlite_func*,int,const char**);
  } aFuncs[] = {
    { "julianday", -1, SQLITE_NUMERIC, juliandayFunc   },
    { "date",      -1, SQLITE_TEXT,    dateFunc        },
    { "time",      -1, SQLITE_TEXT,    timeFunc        },
    { "datetime",  -1, SQLITE_TEXT,    datetimeFunc    },
    { "strftime",  -1, SQLITE_TEXT,    strftimeFunc    },
  };
  int i;

  for(i=0; i
date.c846
delete.c
TypeFunctionSourceLine
TABLE sqliteSrcListLookup(Parse *pParse, SrcList *pSrc)
Table *sqliteSrcListLookup(Parse *pParse, SrcList *pSrc){
  Table *pTab = 0;
  int i;
  for(i=0; inSrc; i++){
    const char *zTab = pSrc->a[i].zName;
    const char *zDb = pSrc->a[i].zDatabase;
    pTab = sqliteLocateTable(pParse, zTab, zDb);
    pSrc->a[i].pTab = pTab;
  }
  return pTab;
}
delete.c19
INTsqliteIsReadOnly(Parse *pParse, Table *pTab, int viewOk)
int sqliteIsReadOnly(Parse *pParse, Table *pTab, int viewOk){
  if( pTab->readOnly ){
    sqliteErrorMsg(pParse, "table %s may not be modified", pTab->zName);
    return 1;
  }
  if( !viewOk && pTab->pSelect ){
    sqliteErrorMsg(pParse, "cannot modify %s because it is a view",pTab->zName);
    return 1;
  }
  return 0;
}
delete.c36
VOIDsqliteDeleteFrom( Parse *pParse, SrcList *pTabList, Expr *pWhere )
void sqliteDeleteFrom(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table from which we should delete things */
  Expr *pWhere           /* The WHERE clause.  May be null */
){
  Vdbe *v;               /* The virtual database engine */
  Table *pTab;           /* The table from which records will be deleted */
  const char *zDb;       /* Name of database holding pTab */
  int end, addr;         /* A couple addresses of generated code */
  int i;                 /* Loop counter */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iCur;              /* VDBE Cursor number for pTab */
  sqlite *db;            /* Main database structure */
  int isView;            /* True if attempting to delete from a view */
  AuthContext sContext;  /* Authorization context */

  int row_triggers_exist = 0;  /* True if any triggers exist */
  int before_triggers;         /* True if there are BEFORE triggers */
  int after_triggers;          /* True if there are AFTER triggers */
  int oldIdx = -1;             /* Cursor for the OLD table of AFTER triggers */

  sContext.pParse = 0;
  if( pParse->nErr || sqlite_malloc_failed ){
    pTabList = 0;
    goto delete_from_cleanup;
  }
  db = pParse->db;
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to delete.  This table has to be
  ** put in an SrcList structure because some of the subroutines we
  ** will be calling are designed to work with multiple tables and expect
  ** an SrcList* parameter instead of just a Table* parameter.
  */
  pTab = sqliteSrcListLookup(pParse, pTabList);
  if( pTab==0 )  goto delete_from_cleanup;
  before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, 
                         TK_DELETE, TK_BEFORE, TK_ROW, 0);
  after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, 
                         TK_DELETE, TK_AFTER, TK_ROW, 0);
  row_triggers_exist = before_triggers || after_triggers;
  isView = pTab->pSelect!=0;
  if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
    goto delete_from_cleanup;
  }
  assert( pTab->iDbnDb );
  zDb = db->aDb[pTab->iDb].zName;
  if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
    goto delete_from_cleanup;
  }

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
    goto delete_from_cleanup;
  }

  /* Allocate a cursor used to store the old.* data for a trigger.
  */
  if( row_triggers_exist ){ 
    oldIdx = pParse->nTab++;
  }

  /* Resolve the column names in all the expressions.
  */
  assert( pTabList->nSrc==1 );
  iCur = pTabList->a[0].iCursor = pParse->nTab++;
  if( pWhere ){
    if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
      goto delete_from_cleanup;
    }
    if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
      goto delete_from_cleanup;
    }
  }

  /* Start the view context
  */
  if( isView ){
    sqliteAuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* Begin generating code.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  sqliteBeginWriteOperation(pParse, row_triggers_exist, pTab->iDb);

  /* If we are trying to delete from a view, construct that view into
  ** a temporary table.
  */
  if( isView ){
    Select *pView = sqliteSelectDup(pTab->pSelect);
    sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
    sqliteSelectDelete(pView);
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){
    sqliteVdbeAddOp(v, OP_Integer, 0, 0);
  }

  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table.  Note, however, that
  ** this means that the row change count will be incorrect.
  */
  if( pWhere==0 && !row_triggers_exist ){
    if( db->flags & SQLITE_CountRows ){
      /* If counting rows deleted, just count the total number of
      ** entries in the table. */
      int endOfLoop = sqliteVdbeMakeLabel(v);
      int addr;
      if( !isView ){
        sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
        sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
      }
      sqliteVdbeAddOp(v, OP_Rewind, iCur, sqliteVdbeCurrentAddr(v)+2);
      addr = sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
      sqliteVdbeAddOp(v, OP_Next, iCur, addr);
      sqliteVdbeResolveLabel(v, endOfLoop);
      sqliteVdbeAddOp(v, OP_Close, iCur, 0);
    }
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Clear, pTab->tnum, pTab->iDb);
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        sqliteVdbeAddOp(v, OP_Clear, pIdx->tnum, pIdx->iDb);
      }
    }
  }

  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
  else{
    /* Begin the database scan
    */
    pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
    if( pWInfo==0 ) goto delete_from_cleanup;

    /* Remember the key of every item to be deleted.
    */
    sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
    if( db->flags & SQLITE_CountRows ){
      sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
    }

    /* End the database scan loop.
    */
    sqliteWhereEnd(pWInfo);

    /* Open the pseudo-table used to store OLD if there are triggers.
    */
    if( row_triggers_exist ){
      sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
    }

    /* Delete every item whose key was written to the list during the
    ** database scan.  We have to delete items after the scan is complete
    ** because deleting an item can change the scan order.
    */
    sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
    end = sqliteVdbeMakeLabel(v);

    /* This is the beginning of the delete loop when there are
    ** row triggers.
    */
    if( row_triggers_exist ){
      addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
      if( !isView ){
        sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
        sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
      }
      sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);

      sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
      sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
      sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
      if( !isView ){
        sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      }

      sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1, 
          oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
          addr);
    }

    if( !isView ){
      /* Open cursors for the table we are deleting from and all its
      ** indices.  If there are row triggers, this happens inside the
      ** OP_ListRead loop because the cursor have to all be closed
      ** before the trigger fires.  If there are no row triggers, the
      ** cursors are opened only once on the outside the loop.
      */
      pParse->nTab = iCur + 1;
      sqliteOpenTableAndIndices(pParse, pTab, iCur);

      /* This is the beginning of the delete loop when there are no
      ** row triggers */
      if( !row_triggers_exist ){ 
        addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
      }

      /* Delete the row */
      sqliteGenerateRowDelete(db, v, pTab, iCur, pParse->trigStack==0);
    }

    /* If there are row triggers, close all cursors then invoke
    ** the AFTER triggers
    */
    if( row_triggers_exist ){
      if( !isView ){
        for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
          sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
        }
        sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      }
      sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1, 
          oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
          addr);
    }

    /* End of the delete loop */
    sqliteVdbeAddOp(v, OP_Goto, 0, addr);
    sqliteVdbeResolveLabel(v, end);
    sqliteVdbeAddOp(v, OP_ListReset, 0, 0);

    /* Close the cursors after the loop if there are no row triggers */
    if( !row_triggers_exist ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      pParse->nTab = iCur;
    }
  }
  sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
  sqliteEndWriteOperation(pParse);

  /*
  ** Return the number of rows that were deleted.
  */
  if( db->flags & SQLITE_CountRows ){
    sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
    sqliteVdbeChangeP3(v, -1, "rows deleted", P3_STATIC);
    sqliteVdbeAddOp(v, OP_Callback, 1, 0);
  }

delete_from_cleanup:
  sqliteAuthContextPop(&sContext);
  sqliteSrcListDelete(pTabList);
  sqliteExprDelete(pWhere);
  return;
}
delete.c53
VOIDsqliteGenerateRowDelete( sqlite *db, Vdbe *v, Table *pTab, int iCur, int count )
void sqliteGenerateRowDelete(
  sqlite *db,        /* The database containing the index */
  Vdbe *v,           /* Generate code into this VDBE */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  int count          /* Increment the row change counter */
){
  int addr;
  addr = sqliteVdbeAddOp(v, OP_NotExists, iCur, 0);
  sqliteGenerateRowIndexDelete(db, v, pTab, iCur, 0);
  sqliteVdbeAddOp(v, OP_Delete, iCur,
    (count?OPFLAG_NCHANGE:0) | OPFLAG_CSCHANGE);
  sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
}
delete.c316
VOIDsqliteGenerateRowIndexDelete( sqlite *db, Vdbe *v, Table *pTab, int iCur, char *aIdxUsed )
void sqliteGenerateRowIndexDelete(
  sqlite *db,        /* The database containing the index */
  Vdbe *v,           /* Generate code into this VDBE */
  Table *pTab,       /* Table containing the row to be deleted */
  int iCur,          /* Cursor number for the table */
  char *aIdxUsed     /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
){
  int i;
  Index *pIdx;

  for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    int j;
    if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
    sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
    for(j=0; jnColumn; j++){
      int idx = pIdx->aiColumn[j];
      if( idx==pTab->iPKey ){
        sqliteVdbeAddOp(v, OP_Dup, j, 0);
      }else{
        sqliteVdbeAddOp(v, OP_Column, iCur, idx);
      }
    }
    sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
    if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
    sqliteVdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
  }
}
delete.c351
encode.c
TypeFunctionSourceLine
INTsqlite_encode_binary(const unsigned char *in, int n, unsigned char *out)
int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
  int i, j, e, m;
  unsigned char x;
  int cnt[256];
  if( n<=0 ){
    if( out ){
      out[0] = 'x';
      out[1] = 0;
    }
    return 1;
  }
  memset(cnt, 0, sizeof(cnt));
  for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
  m = n;
  for(i=1; i<256; i++){
    int sum;
    if( i=='\'' ) continue;
    sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
    if( sum
encode.c103
} INTsqlite_decode_binary(const unsigned char *in, unsigned char *out)
int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
  int i, e;
  unsigned char c;
  e = *(in++);
  i = 0;
  while( (c = *(in++))!=0 ){
    if( c==1 ){
      c = *(in++) - 1;
    }
    out[i++] = c + e;
  }
  return i;
}
encode.c165
INTmain(int argc, char **argv)
int main(int argc, char **argv){
  int i, j, n, m, nOut, nByteIn, nByteOut;
  unsigned char in[30000];
  unsigned char out[33000];

  nByteIn = nByteOut = 0;
  for(i=0; i%d (max %d)", n, strlen(out)+1, m);
    if( strlen(out)+1>m ){
      printf(" ERROR output too big\n");
      exit(1);
    }
    for(j=0; out[j]; j++){
      if( out[j]=='\'' ){
        printf(" ERROR contains (')\n");
        exit(1);
      }
    }
    j = sqlite_decode_binary(out, out);
    if( j!=n ){
      printf(" ERROR decode size %d\n", j);
      exit(1);
    }
    if( memcmp(in, out, n)!=0 ){
      printf(" ERROR decode mismatch\n");
      exit(1);
    }
    printf(" OK\n");
  }
  fprintf(stderr,"Finished.  Total encoding: %d->%d bytes\n",
          nByteIn, nByteOut);
  fprintf(stderr,"Avg size increase: %.3f%%\n",
    (nByteOut-nByteIn)*100.0/(double)nByteIn);
}
encode.c191
expr.c
TypeFunctionSourceLine
EXPR sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken)
Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
  Expr *pNew;
  pNew = sqliteMalloc( sizeof(Expr) );
  if( pNew==0 ){
    /* When malloc fails, we leak memory from pLeft and pRight */
    return 0;
  }
  pNew->op = op;
  pNew->pLeft = pLeft;
  pNew->pRight = pRight;
  if( pToken ){
    assert( pToken->dyn==0 );
    pNew->token = *pToken;
    pNew->span = *pToken;
  }else{
    assert( pNew->token.dyn==0 );
    assert( pNew->token.z==0 );
    assert( pNew->token.n==0 );
    if( pLeft && pRight ){
      sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
    }else{
      pNew->span = pNew->token;
    }
  }
  return pNew;
}
expr.c20
VOIDsqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight)
void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
  assert( pRight!=0 );
  assert( pLeft!=0 );
  /* Note: pExpr might be NULL due to a prior malloc failure */
  if( pExpr && pRight->z && pLeft->z ){
    if( pLeft->dyn==0 && pRight->dyn==0 ){
      pExpr->span.z = pLeft->z;
      pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
    }else{
      pExpr->span.z = 0;
    }
  }
}
expr.c52
EXPR sqliteExprFunction(ExprList *pList, Token *pToken)
Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
  Expr *pNew;
  pNew = sqliteMalloc( sizeof(Expr) );
  if( pNew==0 ){
    /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
    return 0;
  }
  pNew->op = TK_FUNCTION;
  pNew->pList = pList;
  if( pToken ){
    assert( pToken->dyn==0 );
    pNew->token = *pToken;
  }else{
    pNew->token.z = 0;
  }
  pNew->span = pNew->token;
  return pNew;
}
expr.c70
VOIDsqliteExprDelete(Expr *p)
void sqliteExprDelete(Expr *p){
  if( p==0 ) return;
  if( p->span.dyn ) sqliteFree((char*)p->span.z);
  if( p->token.dyn ) sqliteFree((char*)p->token.z);
  sqliteExprDelete(p->pLeft);
  sqliteExprDelete(p->pRight);
  sqliteExprListDelete(p->pList);
  sqliteSelectDelete(p->pSelect);
  sqliteFree(p);
}
expr.c93
EXPR sqliteExprDup(Expr *p)
Expr *sqliteExprDup(Expr *p){
  Expr *pNew;
  if( p==0 ) return 0;
  pNew = sqliteMallocRaw( sizeof(*p) );
  if( pNew==0 ) return 0;
  memcpy(pNew, p, sizeof(*pNew));
  if( p->token.z!=0 ){
    pNew->token.z = sqliteStrNDup(p->token.z, p->token.n);
    pNew->token.dyn = 1;
  }else{
    assert( pNew->token.z==0 );
  }
  pNew->span.z = 0;
  pNew->pLeft = sqliteExprDup(p->pLeft);
  pNew->pRight = sqliteExprDup(p->pRight);
  pNew->pList = sqliteExprListDup(p->pList);
  pNew->pSelect = sqliteSelectDup(p->pSelect);
  return pNew;
}
expr.c108
VOIDsqliteTokenCopy(Token *pTo, Token *pFrom)
void sqliteTokenCopy(Token *pTo, Token *pFrom){
  if( pTo->dyn ) sqliteFree((char*)pTo->z);
  if( pFrom->z ){
    pTo->n = pFrom->n;
    pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
    pTo->dyn = 1;
  }else{
    pTo->z = 0;
  }
}
expr.c139
EXPRLIST sqliteExprListDup(ExprList *p)
ExprList *sqliteExprListDup(ExprList *p){
  ExprList *pNew;
  struct ExprList_item *pItem;
  int i;
  if( p==0 ) return 0;
  pNew = sqliteMalloc( sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nExpr = pNew->nAlloc = p->nExpr;
  pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
  if( pItem==0 ){
    sqliteFree(pNew);
    return 0;
  }
  for(i=0; inExpr; i++, pItem++){
    Expr *pNewExpr, *pOldExpr;
    pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
    if( pOldExpr->span.z!=0 && pNewExpr ){
      /* Always make a copy of the span for top-level expressions in the
      ** expression list.  The logic in SELECT processing that determines
      ** the names of columns in the result set needs this information */
      sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
    }
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
            || pOldExpr->span.z==0 || sqlite_malloc_failed );
    pItem->zName = sqliteStrDup(p->a[i].zName);
    pItem->sortOrder = p->a[i].sortOrder;
    pItem->isAgg = p->a[i].isAgg;
    pItem->done = 0;
  }
  return pNew;
}
expr.c149
SRCLIST sqliteSrcListDup(SrcList *p)
SrcList *sqliteSrcListDup(SrcList *p){
  SrcList *pNew;
  int i;
  int nByte;
  if( p==0 ) return 0;
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
  pNew = sqliteMallocRaw( nByte );
  if( pNew==0 ) return 0;
  pNew->nSrc = pNew->nAlloc = p->nSrc;
  for(i=0; inSrc; i++){
    struct SrcList_item *pNewItem = &pNew->a[i];
    struct SrcList_item *pOldItem = &p->a[i];
    pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
    pNewItem->zName = sqliteStrDup(pOldItem->zName);
    pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
    pNewItem->jointype = pOldItem->jointype;
    pNewItem->iCursor = pOldItem->iCursor;
    pNewItem->pTab = 0;
    pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
    pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
    pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
  }
  return pNew;
}
expr.c180
IDLIST sqliteIdListDup(IdList *p)
IdList *sqliteIdListDup(IdList *p){
  IdList *pNew;
  int i;
  if( p==0 ) return 0;
  pNew = sqliteMallocRaw( sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nId = pNew->nAlloc = p->nId;
  pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
  if( pNew->a==0 ) return 0;
  for(i=0; inId; i++){
    struct IdList_item *pNewItem = &pNew->a[i];
    struct IdList_item *pOldItem = &p->a[i];
    pNewItem->zName = sqliteStrDup(pOldItem->zName);
    pNewItem->idx = pOldItem->idx;
  }
  return pNew;
}
expr.c204
SELECT sqliteSelectDup(Select *p)
Select *sqliteSelectDup(Select *p){
  Select *pNew;
  if( p==0 ) return 0;
  pNew = sqliteMallocRaw( sizeof(*p) );
  if( pNew==0 ) return 0;
  pNew->isDistinct = p->isDistinct;
  pNew->pEList = sqliteExprListDup(p->pEList);
  pNew->pSrc = sqliteSrcListDup(p->pSrc);
  pNew->pWhere = sqliteExprDup(p->pWhere);
  pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
  pNew->pHaving = sqliteExprDup(p->pHaving);
  pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
  pNew->op = p->op;
  pNew->pPrior = sqliteSelectDup(p->pPrior);
  pNew->nLimit = p->nLimit;
  pNew->nOffset = p->nOffset;
  pNew->zSelect = 0;
  pNew->iLimit = -1;
  pNew->iOffset = -1;
  return pNew;
}
expr.c221
EXPRLIST sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName)
ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(ExprList) );
    if( pList==0 ){
      /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
      return 0;
    }
    assert( pList->nAlloc==0 );
  }
  if( pList->nAlloc<=pList->nExpr ){
    pList->nAlloc = pList->nAlloc*2 + 4;
    pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
    if( pList->a==0 ){
      /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
      pList->nExpr = pList->nAlloc = 0;
      return pList;
    }
  }
  assert( pList->a!=0 );
  if( pExpr || pName ){
    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
    memset(pItem, 0, sizeof(*pItem));
    pItem->pExpr = pExpr;
    if( pName ){
      sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
      sqliteDequote(pItem->zName);
    }
  }
  return pList;
}
expr.c244
VOIDsqliteExprListDelete(ExprList *pList)
void sqliteExprListDelete(ExprList *pList){
  int i;
  if( pList==0 ) return;
  assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
  assert( pList->nExpr<=pList->nAlloc );
  for(i=0; inExpr; i++){
    sqliteExprDelete(pList->a[i].pExpr);
    sqliteFree(pList->a[i].zName);
  }
  sqliteFree(pList->a);
  sqliteFree(pList);
}
expr.c279
INTsqliteExprIsConstant(Expr *p)
int sqliteExprIsConstant(Expr *p){
  switch( p->op ){
    case TK_ID:
    case TK_COLUMN:
    case TK_DOT:
    case TK_FUNCTION:
      return 0;
    case TK_NULL:
    case TK_STRING:
    case TK_INTEGER:
    case TK_FLOAT:
    case TK_VARIABLE:
      return 1;
    default: {
      if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
      if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
      if( p->pList ){
        int i;
        for(i=0; ipList->nExpr; i++){
          if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
        }
      }
      return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
    }
  }
  return 0;
}
expr.c295
INTsqliteExprIsInteger(Expr *p, int *pValue)
int sqliteExprIsInteger(Expr *p, int *pValue){
  switch( p->op ){
    case TK_INTEGER: {
      if( sqliteFitsIn32Bits(p->token.z) ){
        *pValue = atoi(p->token.z);
        return 1;
      }
      break;
    }
    case TK_STRING: {
      const char *z = p->token.z;
      int n = p->token.n;
      if( n>0 && z[0]=='-' ){ z++; n--; }
      while( n>0 && *z && isdigit(*z) ){ z++; n--; }
      if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
        *pValue = atoi(p->token.z);
        return 1;
      }
      break;
    }
    case TK_UPLUS: {
      return sqliteExprIsInteger(p->pLeft, pValue);
    }
    case TK_UMINUS: {
      int v;
      if( sqliteExprIsInteger(p->pLeft, &v) ){
        *pValue = -v;
        return 1;
      }
      break;
    }
    default: break;
  }
  return 0;
}
expr.c331
INTsqliteIsRowid(const char *z)
int sqliteIsRowid(const char *z){
  if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
  if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
  if( sqliteStrICmp(z, "OID")==0 ) return 1;
  return 0;
}
expr.c373
STATIC INTlookupName( Parse *pParse, Token *pDbToken, Token *pTableToken, Token *pColumnToken, SrcList *pSrcList, ExprList *pEList, Expr *pExpr )
static int lookupName(
  Parse *pParse,      /* The parsing context */
  Token *pDbToken,     /* Name of the database containing table, or NULL */
  Token *pTableToken,  /* Name of table containing column, or NULL */
  Token *pColumnToken, /* Name of the column. */
  SrcList *pSrcList,   /* List of tables used to resolve column names */
  ExprList *pEList,    /* List of expressions used to resolve "AS" */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
  char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
  char *zCol = 0;      /* Name of the column.  The "Z" */
  int i, j;            /* Loop counters */
  int cnt = 0;         /* Number of matching column names */
  int cntTab = 0;      /* Number of matching table names */
  sqlite *db = pParse->db;  /* The database */

  assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
  if( pDbToken && pDbToken->z ){
    zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
    sqliteDequote(zDb);
  }else{
    zDb = 0;
  }
  if( pTableToken && pTableToken->z ){
    zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
    sqliteDequote(zTab);
  }else{
    assert( zDb==0 );
    zTab = 0;
  }
  zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
  sqliteDequote(zCol);
  if( sqlite_malloc_failed ){
    return 1;  /* Leak memory (zDb and zTab) if malloc fails */
  }
  assert( zTab==0 || pEList==0 );

  pExpr->iTable = -1;
  for(i=0; inSrc; i++){
    struct SrcList_item *pItem = &pSrcList->a[i];
    Table *pTab = pItem->pTab;
    Column *pCol;

    if( pTab==0 ) continue;
    assert( pTab->nCol>0 );
    if( zTab ){
      if( pItem->zAlias ){
        char *zTabName = pItem->zAlias;
        if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
      }else{
        char *zTabName = pTab->zName;
        if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
        if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
          continue;
        }
      }
    }
    if( 0==(cntTab++) ){
      pExpr->iTable = pItem->iCursor;
      pExpr->iDb = pTab->iDb;
    }
    for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){
      if( sqliteStrICmp(pCol->zName, zCol)==0 ){
        cnt++;
        pExpr->iTable = pItem->iCursor;
        pExpr->iDb = pTab->iDb;
        /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
        pExpr->iColumn = j==pTab->iPKey ? -1 : j;
        pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
        break;
      }
    }
  }

  /* If we have not already resolved the name, then maybe 
  ** it is a new.* or old.* trigger argument reference
  */
  if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
    TriggerStack *pTriggerStack = pParse->trigStack;
    Table *pTab = 0;
    if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
      pExpr->iTable = pTriggerStack->newIdx;
      assert( pTriggerStack->pTab );
      pTab = pTriggerStack->pTab;
    }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
      pExpr->iTable = pTriggerStack->oldIdx;
      assert( pTriggerStack->pTab );
      pTab = pTriggerStack->pTab;
    }

    if( pTab ){ 
      int j;
      Column *pCol = pTab->aCol;
      
      pExpr->iDb = pTab->iDb;
      cntTab++;
      for(j=0; j < pTab->nCol; j++, pCol++) {
        if( sqliteStrICmp(pCol->zName, zCol)==0 ){
          cnt++;
          pExpr->iColumn = j==pTab->iPKey ? -1 : j;
          pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
          break;
        }
      }
    }
  }

  /*
  ** Perhaps the name is a reference to the ROWID
  */
  if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
    cnt = 1;
    pExpr->iColumn = -1;
    pExpr->dataType = SQLITE_SO_NUM;
  }

  /*
  ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
  ** might refer to an result-set alias.  This happens, for example, when
  ** we are resolving names in the WHERE clause of the following command:
  **
  **     SELECT a+b AS x FROM table WHERE x<10;
  **
  ** In cases like this, replace pExpr with a copy of the expression that
  ** forms the result set entry ("a+b" in the example) and return immediately.
  ** Note that the expression in the result set should have already been
  ** resolved by the time the WHERE clause is resolved.
  */
  if( cnt==0 && pEList!=0 ){
    for(j=0; jnExpr; j++){
      char *zAs = pEList->a[j].zName;
      if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
        assert( pExpr->pLeft==0 && pExpr->pRight==0 );
        pExpr->op = TK_AS;
        pExpr->iColumn = j;
        pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
        sqliteFree(zCol);
        assert( zTab==0 && zDb==0 );
        return 0;
      }
    } 
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that
  ** case, we need to return right away and not make any changes to
  ** pExpr.
  */
  if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
    sqliteFree(zCol);
    return 0;
  }

  /*
  ** cnt==0 means there was not match.  cnt>1 means there were two or
  ** more matches.  Either way, we have an error.
  */
  if( cnt!=1 ){
    char *z = 0;
    char *zErr;
    zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
    if( zDb ){
      sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
    }else if( zTab ){
      sqliteSetString(&z, zTab, ".", zCol, 0);
    }else{
      z = sqliteStrDup(zCol);
    }
    sqliteErrorMsg(pParse, zErr, z);
    sqliteFree(z);
  }

  /* Clean up and return
  */
  sqliteFree(zDb);
  sqliteFree(zTab);
  sqliteFree(zCol);
  sqliteExprDelete(pExpr->pLeft);
  pExpr->pLeft = 0;
  sqliteExprDelete(pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = TK_COLUMN;
  sqliteAuthRead(pParse, pExpr, pSrcList);
  return cnt!=1;
}
expr.c383
INTsqliteExprResolveIds( Parse *pParse, SrcList *pSrcList, ExprList *pEList, Expr *pExpr )
int sqliteExprResolveIds(
  Parse *pParse,     /* The parser context */
  SrcList *pSrcList, /* List of tables used to resolve column names */
  ExprList *pEList,  /* List of expressions used to resolve "AS" */
  Expr *pExpr        /* The expression to be analyzed. */
){
  int i;

  if( pExpr==0 || pSrcList==0 ) return 0;
  for(i=0; inSrc; i++){
    assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab );
  }
  switch( pExpr->op ){
    /* Double-quoted strings (ex: "abc") are used as identifiers if
    ** possible.  Otherwise they remain as strings.  Single-quoted
    ** strings (ex: 'abc') are always string literals.
    */
    case TK_STRING: {
      if( pExpr->token.z[0]=='\'' ) break;
      /* Fall thru into the TK_ID case if this is a double-quoted string */
    }
    /* A lone identifier is the name of a columnd.
    */
    case TK_ID: {
      if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
        return 1;
      }
      break; 
    }
  
    /* A table name and column name:     ID.ID
    ** Or a database, table and column:  ID.ID.ID
    */
    case TK_DOT: {
      Token *pColumn;
      Token *pTable;
      Token *pDb;
      Expr *pRight;

      pRight = pExpr->pRight;
      if( pRight->op==TK_ID ){
        pDb = 0;
        pTable = &pExpr->pLeft->token;
        pColumn = &pRight->token;
      }else{
        assert( pRight->op==TK_DOT );
        pDb = &pExpr->pLeft->token;
        pTable = &pRight->pLeft->token;
        pColumn = &pRight->pRight->token;
      }
      if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
        return 1;
      }
      break;
    }

    case TK_IN: {
      Vdbe *v = sqliteGetVdbe(pParse);
      if( v==0 ) return 1;
      if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
        return 1;
      }
      if( pExpr->pSelect ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into a temporary
        ** table.  The cursor number of the temporary table has already
        ** been put in iTable by sqliteExprResolveInSelect().
        */
        pExpr->iTable = pParse->nTab++;
        sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
        sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
      }else if( pExpr->pList ){
        /* Case 2:     expr IN (exprlist)
        **
        ** Create a set to put the exprlist values in.  The Set id is stored
        ** in iTable.
        */
        int i, iSet;
        for(i=0; ipList->nExpr; i++){
          Expr *pE2 = pExpr->pList->a[i].pExpr;
          if( !sqliteExprIsConstant(pE2) ){
            sqliteErrorMsg(pParse,
              "right-hand side of IN operator must be constant");
            return 1;
          }
          if( sqliteExprCheck(pParse, pE2, 0, 0) ){
            return 1;
          }
        }
        iSet = pExpr->iTable = pParse->nSet++;
        for(i=0; ipList->nExpr; i++){
          Expr *pE2 = pExpr->pList->a[i].pExpr;
          switch( pE2->op ){
            case TK_FLOAT:
            case TK_INTEGER:
            case TK_STRING: {
              int addr;
              assert( pE2->token.z );
              addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
                                  pE2->token.z, pE2->token.n);
              sqliteVdbeDequoteP3(v, addr);
              break;
            }
            default: {
              sqliteExprCode(pParse, pE2);
              sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
              break;
            }
          }
        }
      }
      break;
    }

    case TK_SELECT: {
      /* This has to be a scalar SELECT.  Generate code to put the
      ** value of this select in a memory cell and record the number
      ** of the memory cell in iColumn.
      */
      pExpr->iColumn = pParse->nMem++;
      if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
        return 1;
      }
      break;
    }

    /* For all else, just recursively walk the tree */
    default: {
      if( pExpr->pLeft
      && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
        return 1;
      }
      if( pExpr->pRight 
      && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
        return 1;
      }
      if( pExpr->pList ){
        int i;
        ExprList *pList = pExpr->pList;
        for(i=0; inExpr; i++){
          Expr *pArg = pList->a[i].pExpr;
          if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
            return 1;
          }
        }
      }
    }
  }
  return 0;
}
expr.c598
STATIC VOIDgetFunctionName(Expr *pExpr, const char **pzName, int *pnName)
static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
  switch( pExpr->op ){
    case TK_FUNCTION: {
      *pzName = pExpr->token.z;
      *pnName = pExpr->token.n;
      break;
    }
    case TK_LIKE: {
      *pzName = "like";
      *pnName = 4;
      break;
    }
    case TK_GLOB: {
      *pzName = "glob";
      *pnName = 4;
      break;
    }
    default: {
      *pzName = "can't happen";
      *pnName = 12;
      break;
    }
  }
}
expr.c781
INTsqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg)
int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
  int nErr = 0;
  if( pExpr==0 ) return 0;
  switch( pExpr->op ){
    case TK_GLOB:
    case TK_LIKE:
    case TK_FUNCTION: {
      int n = pExpr->pList ? pExpr->pList->nExpr : 0;  /* Number of arguments */
      int no_such_func = 0;       /* True if no such function exists */
      int wrong_num_args = 0;     /* True if wrong number of arguments */
      int is_agg = 0;             /* True if is an aggregate function */
      int i;
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;

      getFunctionName(pExpr, &zId, &nId);
      pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
      if( pDef==0 ){
        pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
      }
      if( is_agg && !allowAgg ){
        sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
        nErr++;
        is_agg = 0;
      }else if( no_such_func ){
        sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
        nErr++;
      }else if( wrong_num_args ){
        sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        nErr++;
      }
      if( is_agg ){
        pExpr->op = TK_AGG_FUNCTION;
        if( pIsAgg ) *pIsAgg = 1;
      }
      for(i=0; nErr==0 && ipList->a[i].pExpr,
                               allowAgg && !is_agg, pIsAgg);
      }
      if( pDef==0 ){
        /* Already reported an error */
      }else if( pDef->dataType>=0 ){
        if( pDef->dataTypedataType = 
             sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
        }else{
          pExpr->dataType = SQLITE_SO_NUM;
        }
      }else if( pDef->dataType==SQLITE_ARGS ){
        pDef->dataType = SQLITE_SO_TEXT;
        for(i=0; ipList->a[i].pExpr)==SQLITE_SO_NUM ){
            pExpr->dataType = SQLITE_SO_NUM;
            break;
          }
        }
      }else if( pDef->dataType==SQLITE_NUMERIC ){
        pExpr->dataType = SQLITE_SO_NUM;
      }else{
        pExpr->dataType = SQLITE_SO_TEXT;
      }
    }
    default: {
      if( pExpr->pLeft ){
        nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
      }
      if( nErr==0 && pExpr->pRight ){
        nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
      }
      if( nErr==0 && pExpr->pList ){
        int n = pExpr->pList->nExpr;
        int i;
        for(i=0; nErr==0 && ipList->a[i].pExpr;
          nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
        }
      }
      break;
    }
  }
  return nErr;
}
expr.c814
INTsqliteExprType(Expr *p)
int sqliteExprType(Expr *p){
  if( p==0 ) return SQLITE_SO_NUM;
  while( p ) switch( p->op ){
    case TK_PLUS:
    case TK_MINUS:
    case TK_STAR:
    case TK_SLASH:
    case TK_AND:
    case TK_OR:
    case TK_ISNULL:
    case TK_NOTNULL:
    case TK_NOT:
    case TK_UMINUS:
    case TK_UPLUS:
    case TK_BITAND:
    case TK_BITOR:
    case TK_BITNOT:
    case TK_LSHIFT:
    case TK_RSHIFT:
    case TK_REM:
    case TK_INTEGER:
    case TK_FLOAT:
    case TK_IN:
    case TK_BETWEEN:
    case TK_GLOB:
    case TK_LIKE:
      return SQLITE_SO_NUM;

    case TK_STRING:
    case TK_NULL:
    case TK_CONCAT:
    case TK_VARIABLE:
      return SQLITE_SO_TEXT;

    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ:
      if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
        return SQLITE_SO_NUM;
      }
      p = p->pRight;
      break;

    case TK_AS:
      p = p->pLeft;
      break;

    case TK_COLUMN:
    case TK_FUNCTION:
    case TK_AGG_FUNCTION:
      return p->dataType;

    case TK_SELECT:
      assert( p->pSelect );
      assert( p->pSelect->pEList );
      assert( p->pSelect->pEList->nExpr>0 );
      p = p->pSelect->pEList->a[0].pExpr;
      break;

    case TK_CASE: {
      if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
        return SQLITE_SO_NUM;
      }
      if( p->pList ){
        int i;
        ExprList *pList = p->pList;
        for(i=1; inExpr; i+=2){
          if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
            return SQLITE_SO_NUM;
          }
        }
      }
      return SQLITE_SO_TEXT;
    }

    default:
      assert( p->op==TK_ABORT );  /* Can't Happen */
      break;
  }
  return SQLITE_SO_NUM;
}
expr.c915
VOIDsqliteExprCode(Parse *pParse, Expr *pExpr)
void sqliteExprCode(Parse *pParse, Expr *pExpr){
  Vdbe *v = pParse->pVdbe;
  int op;
  if( v==0 || pExpr==0 ) return;
  switch( pExpr->op ){
    case TK_PLUS:     op = OP_Add;      break;
    case TK_MINUS:    op = OP_Subtract; break;
    case TK_STAR:     op = OP_Multiply; break;
    case TK_SLASH:    op = OP_Divide;   break;
    case TK_AND:      op = OP_And;      break;
    case TK_OR:       op = OP_Or;       break;
    case TK_LT:       op = OP_Lt;       break;
    case TK_LE:       op = OP_Le;       break;
    case TK_GT:       op = OP_Gt;       break;
    case TK_GE:       op = OP_Ge;       break;
    case TK_NE:       op = OP_Ne;       break;
    case TK_EQ:       op = OP_Eq;       break;
    case TK_ISNULL:   op = OP_IsNull;   break;
    case TK_NOTNULL:  op = OP_NotNull;  break;
    case TK_NOT:      op = OP_Not;      break;
    case TK_UMINUS:   op = OP_Negative; break;
    case TK_BITAND:   op = OP_BitAnd;   break;
    case TK_BITOR:    op = OP_BitOr;    break;
    case TK_BITNOT:   op = OP_BitNot;   break;
    case TK_LSHIFT:   op = OP_ShiftLeft;  break;
    case TK_RSHIFT:   op = OP_ShiftRight; break;
    case TK_REM:      op = OP_Remainder;  break;
    default: break;
  }
  switch( pExpr->op ){
    case TK_COLUMN: {
      if( pParse->useAgg ){
        sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
      }else if( pExpr->iColumn>=0 ){
        sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
      }else{
        sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
      }
      break;
    }
    case TK_STRING:
    case TK_FLOAT:
    case TK_INTEGER: {
      if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
        sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
      }else{
        sqliteVdbeAddOp(v, OP_String, 0, 0);
      }
      assert( pExpr->token.z );
      sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
      sqliteVdbeDequoteP3(v, -1);
      break;
    }
    case TK_NULL: {
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      break;
    }
    case TK_VARIABLE: {
      sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
      break;
    }
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
        op += 6;  /* Convert numeric opcodes to text opcodes */
      }
      /* Fall through into the next case */
    }
    case TK_AND:
    case TK_OR:
    case TK_PLUS:
    case TK_STAR:
    case TK_MINUS:
    case TK_REM:
    case TK_BITAND:
    case TK_BITOR:
    case TK_SLASH: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteExprCode(pParse, pExpr->pRight);
      sqliteVdbeAddOp(v, op, 0, 0);
      break;
    }
    case TK_LSHIFT:
    case TK_RSHIFT: {
      sqliteExprCode(pParse, pExpr->pRight);
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, op, 0, 0);
      break;
    }
    case TK_CONCAT: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteExprCode(pParse, pExpr->pRight);
      sqliteVdbeAddOp(v, OP_Concat, 2, 0);
      break;
    }
    case TK_UMINUS: {
      assert( pExpr->pLeft );
      if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
        Token *p = &pExpr->pLeft->token;
        char *z = sqliteMalloc( p->n + 2 );
        sprintf(z, "-%.*s", p->n, p->z);
        if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
          sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
        }else{
          sqliteVdbeAddOp(v, OP_String, 0, 0);
        }
        sqliteVdbeChangeP3(v, -1, z, p->n+1);
        sqliteFree(z);
        break;
      }
      /* Fall through into TK_NOT */
    }
    case TK_BITNOT:
    case TK_NOT: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, op, 0, 0);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      int dest;
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
      sqliteExprCode(pParse, pExpr->pLeft);
      dest = sqliteVdbeCurrentAddr(v) + 2;
      sqliteVdbeAddOp(v, op, 1, dest);
      sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
      break;
    }
    case TK_AGG_FUNCTION: {
      sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
      break;
    }
    case TK_GLOB:
    case TK_LIKE:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;
      int nExpr = pList ? pList->nExpr : 0;
      FuncDef *pDef;
      int nId;
      const char *zId;
      getFunctionName(pExpr, &zId, &nId);
      pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
      assert( pDef!=0 );
      nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
      sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
      break;
    }
    case TK_SELECT: {
      sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
      break;
    }
    case TK_IN: {
      int addr;
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
      sqliteExprCode(pParse, pExpr->pLeft);
      addr = sqliteVdbeCurrentAddr(v);
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
      sqliteVdbeAddOp(v, OP_Pop, 2, 0);
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
      if( pExpr->pSelect ){
        sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
      }else{
        sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
      }
      sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
      break;
    }
    case TK_BETWEEN: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
      sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
      sqliteVdbeAddOp(v, OP_Ge, 0, 0);
      sqliteVdbeAddOp(v, OP_Pull, 1, 0);
      sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
      sqliteVdbeAddOp(v, OP_Le, 0, 0);
      sqliteVdbeAddOp(v, OP_And, 0, 0);
      break;
    }
    case TK_UPLUS:
    case TK_AS: {
      sqliteExprCode(pParse, pExpr->pLeft);
      break;
    }
    case TK_CASE: {
      int expr_end_label;
      int jumpInst;
      int addr;
      int nExpr;
      int i;

      assert(pExpr->pList);
      assert((pExpr->pList->nExpr % 2) == 0);
      assert(pExpr->pList->nExpr > 0);
      nExpr = pExpr->pList->nExpr;
      expr_end_label = sqliteVdbeMakeLabel(v);
      if( pExpr->pLeft ){
        sqliteExprCode(pParse, pExpr->pLeft);
      }
      for(i=0; ipList->a[i].pExpr);
        if( pExpr->pLeft ){
          sqliteVdbeAddOp(v, OP_Dup, 1, 1);
          jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
          sqliteVdbeAddOp(v, OP_Pop, 1, 0);
        }else{
          jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
        }
        sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
        sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
        addr = sqliteVdbeCurrentAddr(v);
        sqliteVdbeChangeP2(v, jumpInst, addr);
      }
      if( pExpr->pLeft ){
        sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      }
      if( pExpr->pRight ){
        sqliteExprCode(pParse, pExpr->pRight);
      }else{
        sqliteVdbeAddOp(v, OP_String, 0, 0);
      }
      sqliteVdbeResolveLabel(v, expr_end_label);
      break;
    }
    case TK_RAISE: {
      if( !pParse->trigStack ){
        sqliteErrorMsg(pParse,
                       "RAISE() may only be used within a trigger-program");
        pParse->nErr++;
        return;
      }
      if( pExpr->iColumn == OE_Rollback ||
          pExpr->iColumn == OE_Abort ||
          pExpr->iColumn == OE_Fail ){
          sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
                           pExpr->token.z, pExpr->token.n);
          sqliteVdbeDequoteP3(v, -1);
      } else {
          assert( pExpr->iColumn == OE_Ignore );
          sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
                           "(IGNORE jump)", 0);
      }
    }
    break;
  }
}
expr.c1007
INTsqliteExprCodeExprList( Parse *pParse, ExprList *pList, int includeTypes )
int sqliteExprCodeExprList(
  Parse *pParse,     /* Parsing context */
  ExprList *pList,   /* The expression list to be coded */
  int includeTypes   /* TRUE to put datatypes on the stack too */
){
  struct ExprList_item *pItem;
  int i, n;
  Vdbe *v;
  if( pList==0 ) return 0;
  v = sqliteGetVdbe(pParse);
  n = pList->nExpr;
  for(pItem=pList->a, i=0; ipExpr);
    if( includeTypes ){
      sqliteVdbeOp3(v, OP_String, 0, 0, 
         sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
         P3_STATIC);
    }
  }
  return includeTypes ? n*2 : n;
}
expr.c1262
VOIDsqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull)
void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  Vdbe *v = pParse->pVdbe;
  int op = 0;
  if( v==0 || pExpr==0 ) return;
  switch( pExpr->op ){
    case TK_LT:       op = OP_Lt;       break;
    case TK_LE:       op = OP_Le;       break;
    case TK_GT:       op = OP_Gt;       break;
    case TK_GE:       op = OP_Ge;       break;
    case TK_NE:       op = OP_Ne;       break;
    case TK_EQ:       op = OP_Eq;       break;
    case TK_ISNULL:   op = OP_IsNull;   break;
    case TK_NOTNULL:  op = OP_NotNull;  break;
    default:  break;
  }
  switch( pExpr->op ){
    case TK_AND: {
      int d2 = sqliteVdbeMakeLabel(v);
      sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
      sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
      sqliteVdbeResolveLabel(v, d2);
      break;
    }
    case TK_OR: {
      sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
      sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
      break;
    }
    case TK_NOT: {
      sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
      break;
    }
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteExprCode(pParse, pExpr->pRight);
      if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
        op += 6;  /* Convert numeric opcodes to text opcodes */
      }
      sqliteVdbeAddOp(v, op, jumpIfNull, dest);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, op, 1, dest);
      break;
    }
    case TK_IN: {
      int addr;
      sqliteExprCode(pParse, pExpr->pLeft);
      addr = sqliteVdbeCurrentAddr(v);
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
      if( pExpr->pSelect ){
        sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
      }else{
        sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
      }
      break;
    }
    case TK_BETWEEN: {
      int addr;
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
      sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
      addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
      sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
      sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
      sqliteVdbeAddOp(v, OP_Integer, 0, 0);
      sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      break;
    }
    default: {
      sqliteExprCode(pParse, pExpr);
      sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
      break;
    }
  }
}
expr.c1292
VOIDsqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull)
void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  Vdbe *v = pParse->pVdbe;
  int op = 0;
  if( v==0 || pExpr==0 ) return;
  switch( pExpr->op ){
    case TK_LT:       op = OP_Ge;       break;
    case TK_LE:       op = OP_Gt;       break;
    case TK_GT:       op = OP_Le;       break;
    case TK_GE:       op = OP_Lt;       break;
    case TK_NE:       op = OP_Eq;       break;
    case TK_EQ:       op = OP_Ne;       break;
    case TK_ISNULL:   op = OP_NotNull;  break;
    case TK_NOTNULL:  op = OP_IsNull;   break;
    default:  break;
  }
  switch( pExpr->op ){
    case TK_AND: {
      sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
      sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
      break;
    }
    case TK_OR: {
      int d2 = sqliteVdbeMakeLabel(v);
      sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
      sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
      sqliteVdbeResolveLabel(v, d2);
      break;
    }
    case TK_NOT: {
      sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
      break;
    }
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_NE:
    case TK_EQ: {
      if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
        /* Convert numeric comparison opcodes into text comparison opcodes.
        ** This step depends on the fact that the text comparision opcodes are
        ** always 6 greater than their corresponding numeric comparison
        ** opcodes.
        */
        assert( OP_Eq+6 == OP_StrEq );
        op += 6;
      }
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteExprCode(pParse, pExpr->pRight);
      sqliteVdbeAddOp(v, op, jumpIfNull, dest);
      break;
    }
    case TK_ISNULL:
    case TK_NOTNULL: {
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, op, 1, dest);
      break;
    }
    case TK_IN: {
      int addr;
      sqliteExprCode(pParse, pExpr->pLeft);
      addr = sqliteVdbeCurrentAddr(v);
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
      if( pExpr->pSelect ){
        sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
      }else{
        sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
      }
      break;
    }
    case TK_BETWEEN: {
      int addr;
      sqliteExprCode(pParse, pExpr->pLeft);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
      sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
      addr = sqliteVdbeCurrentAddr(v);
      sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, dest);
      sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
      sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
      break;
    }
    default: {
      sqliteExprCode(pParse, pExpr);
      sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
      break;
    }
  }
}
expr.c1387
INTsqliteExprCompare(Expr *pA, Expr *pB)
int sqliteExprCompare(Expr *pA, Expr *pB){
  int i;
  if( pA==0 ){
    return pB==0;
  }else if( pB==0 ){
    return 0;
  }
  if( pA->op!=pB->op ) return 0;
  if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
  if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
  if( pA->pList ){
    if( pB->pList==0 ) return 0;
    if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
    for(i=0; ipList->nExpr; i++){
      if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
        return 0;
      }
    }
  }else if( pB->pList ){
    return 0;
  }
  if( pA->pSelect || pB->pSelect ) return 0;
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
  if( pA->token.z ){
    if( pB->token.z==0 ) return 0;
    if( pB->token.n!=pA->token.n ) return 0;
    if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
  }
  return 1;
}
expr.c1488
STATIC INTappendAggInfo(Parse *pParse)
static int appendAggInfo(Parse *pParse){
  if( (pParse->nAgg & 0x7)==0 ){
    int amt = pParse->nAgg + 8;
    AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
    if( aAgg==0 ){
      return -1;
    }
    pParse->aAgg = aAgg;
  }
  memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
  return pParse->nAgg++;
}
expr.c1523
INTsqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr)
int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
  int i;
  AggExpr *aAgg;
  int nErr = 0;

  if( pExpr==0 ) return 0;
  switch( pExpr->op ){
    case TK_COLUMN: {
      aAgg = pParse->aAgg;
      for(i=0; inAgg; i++){
        if( aAgg[i].isAgg ) continue;
        if( aAgg[i].pExpr->iTable==pExpr->iTable
         && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
          break;
        }
      }
      if( i>=pParse->nAgg ){
        i = appendAggInfo(pParse);
        if( i<0 ) return 1;
        pParse->aAgg[i].isAgg = 0;
        pParse->aAgg[i].pExpr = pExpr;
      }
      pExpr->iAgg = i;
      break;
    }
    case TK_AGG_FUNCTION: {
      aAgg = pParse->aAgg;
      for(i=0; inAgg; i++){
        if( !aAgg[i].isAgg ) continue;
        if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
          break;
        }
      }
      if( i>=pParse->nAgg ){
        i = appendAggInfo(pParse);
        if( i<0 ) return 1;
        pParse->aAgg[i].isAgg = 1;
        pParse->aAgg[i].pExpr = pExpr;
        pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
             pExpr->token.z, pExpr->token.n,
             pExpr->pList ? pExpr->pList->nExpr : 0, 0);
      }
      pExpr->iAgg = i;
      break;
    }
    default: {
      if( pExpr->pLeft ){
        nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
      }
      if( nErr==0 && pExpr->pRight ){
        nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
      }
      if( nErr==0 && pExpr->pList ){
        int n = pExpr->pList->nExpr;
        int i;
        for(i=0; nErr==0 && ipList->a[i].pExpr);
        }
      }
      break;
    }
  }
  return nErr;
}
expr.c1539
FUNCDEF sqliteFindFunction( sqlite *db, const char *zName, int nName, int nArg, int createFlag )
FuncDef *sqliteFindFunction(
  sqlite *db,        /* An open database */
  const char *zName, /* Name of the function.  Not null-terminated */
  int nName,         /* Number of characters in the name */
  int nArg,          /* Number of arguments.  -1 means any number */
  int createFlag     /* Create new entry if true and does not otherwise exist */
){
  FuncDef *pFirst, *p, *pMaybe;
  pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
  if( p && !createFlag && nArg<0 ){
    while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
    return p;
  }
  pMaybe = 0;
  while( p && p->nArg!=nArg ){
    if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
    p = p->pNext;
  }
  if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
    return 0;
  }
  if( p==0 && pMaybe ){
    assert( createFlag==0 );
    return pMaybe;
  }
  if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
    p->nArg = nArg;
    p->pNext = pFirst;
    p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
    sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
  }
  return p;
}
expr.c1615
func.c
TypeFunctionSourceLine
STATIC VOIDminmaxFunc(sqlite_func *context, int argc, const char **argv)
static void minmaxFunc(sqlite_func *context, int argc, const char **argv){
  const char *zBest; 
  int i;
  int (*xCompare)(const char*, const char*);
  int mask;    /* 0 for min() or 0xffffffff for max() */

  if( argc==0 ) return;
  mask = (int)sqlite_user_data(context);
  zBest = argv[0];
  if( zBest==0 ) return;
  if( argv[1][0]=='n' ){
    xCompare = sqliteCompare;
  }else{
    xCompare = strcmp;
  }
  for(i=2; i
func.c28
STATIC VOIDtypeofFunc(sqlite_func *context, int argc, const char **argv)
static void typeofFunc(sqlite_func *context, int argc, const char **argv){
  assert( argc==2 );
  sqlite_set_result_string(context, argv[1], -1);
}
func.c55
STATIC VOIDlengthFunc(sqlite_func *context, int argc, const char **argv)
static void lengthFunc(sqlite_func *context, int argc, const char **argv){
  const char *z;
  int len;

  assert( argc==1 );
  z = argv[0];
  if( z==0 ) return;
#ifdef SQLITE_UTF8
  for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
#else
  len = strlen(z);
#endif
  sqlite_set_result_int(context, len);
}
func.c63
STATIC VOIDabsFunc(sqlite_func *context, int argc, const char **argv)
static void absFunc(sqlite_func *context, int argc, const char **argv){
  const char *z;
  assert( argc==1 );
  z = argv[0];
  if( z==0 ) return;
  if( z[0]=='-' && isdigit(z[1]) ) z++;
  sqlite_set_result_string(context, z, -1);
}
func.c81
STATIC VOIDsubstrFunc(sqlite_func *context, int argc, const char **argv)
static void substrFunc(sqlite_func *context, int argc, const char **argv){
  const char *z;
#ifdef SQLITE_UTF8
  const char *z2;
  int i;
#endif
  int p1, p2, len;
  assert( argc==3 );
  z = argv[0];
  if( z==0 ) return;
  p1 = atoi(argv[1]?argv[1]:0);
  p2 = atoi(argv[2]?argv[2]:0);
#ifdef SQLITE_UTF8
  for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
#else
  len = strlen(z);
#endif
  if( p1<0 ){
    p1 += len;
    if( p1<0 ){
      p2 += p1;
      p1 = 0;
    }
  }else if( p1>0 ){
    p1--;
  }
  if( p1+p2>len ){
    p2 = len-p1;
  }
#ifdef SQLITE_UTF8
  for(i=0; i
func.c93
STATIC VOIDroundFunc(sqlite_func *context, int argc, const char **argv)
static void roundFunc(sqlite_func *context, int argc, const char **argv){
  int n;
  double r;
  char zBuf[100];
  assert( argc==1 || argc==2 );
  if( argv[0]==0 || (argc==2 && argv[1]==0) ) return;
  n = argc==2 ? atoi(argv[1]) : 0;
  if( n>30 ) n = 30;
  if( n<0 ) n = 0;
  r = sqliteAtoF(argv[0], 0);
  sprintf(zBuf,"%.*f",n,r);
  sqlite_set_result_string(context, zBuf, -1);
}
func.c139
STATIC VOIDupperFunc(sqlite_func *context, int argc, const char **argv)
static void upperFunc(sqlite_func *context, int argc, const char **argv){
  unsigned char *z;
  int i;
  if( argc<1 || argv[0]==0 ) return;
  z = (unsigned char*)sqlite_set_result_string(context, argv[0], -1);
  if( z==0 ) return;
  for(i=0; z[i]; i++){
    if( islower(z[i]) ) z[i] = toupper(z[i]);
  }
}
func.c156
STATIC VOIDlowerFunc(sqlite_func *context, int argc, const char **argv)
static void lowerFunc(sqlite_func *context, int argc, const char **argv){
  unsigned char *z;
  int i;
  if( argc<1 || argv[0]==0 ) return;
  z = (unsigned char*)sqlite_set_result_string(context, argv[0], -1);
  if( z==0 ) return;
  for(i=0; z[i]; i++){
    if( isupper(z[i]) ) z[i] = tolower(z[i]);
  }
}
func.c169
STATIC VOIDifnullFunc(sqlite_func *context, int argc, const char **argv)
static void ifnullFunc(sqlite_func *context, int argc, const char **argv){
  int i;
  for(i=0; i
func.c180
STATIC VOIDrandomFunc(sqlite_func *context, int argc, const char **argv)
static void randomFunc(sqlite_func *context, int argc, const char **argv){
  int r;
  sqliteRandomness(sizeof(r), &r);
  sqlite_set_result_int(context, r);
}
func.c195
STATIC VOIDlast_insert_rowid(sqlite_func *context, int arg, const char **argv)
static void last_insert_rowid(sqlite_func *context, int arg, const char **argv){
  sqlite *db = sqlite_user_data(context);
  sqlite_set_result_int(context, sqlite_last_insert_rowid(db));
}
func.c204
STATIC VOIDchange_count(sqlite_func *context, int arg, const char **argv)
static void change_count(sqlite_func *context, int arg, const char **argv){
  sqlite *db = sqlite_user_data(context);
  sqlite_set_result_int(context, sqlite_changes(db));
}
func.c213
STATIC VOIDlast_statement_change_count(sqlite_func *context, int arg, const char **argv)
static void last_statement_change_count(sqlite_func *context, int arg,
                                        const char **argv){
  sqlite *db = sqlite_user_data(context);
  sqlite_set_result_int(context, sqlite_last_statement_changes(db));
}
func.c222
STATIC VOIDlikeFunc(sqlite_func *context, int arg, const char **argv)
static void likeFunc(sqlite_func *context, int arg, const char **argv){
  if( argv[0]==0 || argv[1]==0 ) return;
  sqlite_set_result_int(context, 
    sqliteLikeCompare((const unsigned char*)argv[0],
                      (const unsigned char*)argv[1]));
}
func.c232
STATIC VOIDglobFunc(sqlite_func *context, int arg, const char **argv)
static void globFunc(sqlite_func *context, int arg, const char **argv){
  if( argv[0]==0 || argv[1]==0 ) return;
  sqlite_set_result_int(context,
    sqliteGlobCompare((const unsigned char*)argv[0],
                      (const unsigned char*)argv[1]));
}
func.c248
STATIC VOIDnullifFunc(sqlite_func *context, int argc, const char **argv)
static void nullifFunc(sqlite_func *context, int argc, const char **argv){
  if( argv[0]!=0 && sqliteCompare(argv[0],argv[1])!=0 ){
    sqlite_set_result_string(context, argv[0], -1);
  }
}
func.c264
STATIC VOIDversionFunc(sqlite_func *context, int argc, const char **argv)
static void versionFunc(sqlite_func *context, int argc, const char **argv){
  sqlite_set_result_string(context, sqlite_version, -1);
}
func.c275
STATIC VOIDquoteFunc(sqlite_func *context, int argc, const char **argv)
static void quoteFunc(sqlite_func *context, int argc, const char **argv){
  if( argc<1 ) return;
  if( argv[0]==0 ){
    sqlite_set_result_string(context, "NULL", 4);
  }else if( sqliteIsNumber(argv[0]) ){
    sqlite_set_result_string(context, argv[0], -1);
  }else{
    int i,j,n;
    char *z;
    for(i=n=0; argv[0][i]; i++){ if( argv[0][i]=='\'' ) n++; }
    z = sqliteMalloc( i+n+3 );
    if( z==0 ) return;
    z[0] = '\'';
    for(i=0, j=1; argv[0][i]; i++){
      z[j++] = argv[0][i];
      if( argv[0][i]=='\'' ){
        z[j++] = '\'';
      }
    }
    z[j++] = '\'';
    z[j] = 0;
    sqlite_set_result_string(context, z, j);
    sqliteFree(z);
  }
}
func.c283
STATIC VOIDsoundexFunc(sqlite_func *context, int argc, const char **argv)
static void soundexFunc(sqlite_func *context, int argc, const char **argv){
  char zResult[8];
  const char *zIn;
  int i, j;
  static const unsigned char iCode[] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
    1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
    0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
    1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
  };
  assert( argc==1 );
  zIn = argv[0];
  for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
  if( zIn[i] ){
    zResult[0] = toupper(zIn[i]);
    for(j=1; j<4 && zIn[i]; i++){
      int code = iCode[zIn[i]&0x7f];
      if( code>0 ){
        zResult[j++] = code + '0';
      }
    }
    while( j<4 ){
      zResult[j++] = '0';
    }
    zResult[j] = 0;
    sqlite_set_result_string(context, zResult, 4);
  }else{
    sqlite_set_result_string(context, "?000", 4);
  }
}
func.c321
STATIC VOIDrandStr(sqlite_func *context, int argc, const char **argv)
static void randStr(sqlite_func *context, int argc, const char **argv){
  static const unsigned char zSrc[] = 
     "abcdefghijklmnopqrstuvwxyz"
     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
     "0123456789"
     ".-!,:*^+=_|?/<> ";
  int iMin, iMax, n, r, i;
  unsigned char zBuf[1000];
  if( argc>=1 ){
    iMin = atoi(argv[0]);
    if( iMin<0 ) iMin = 0;
    if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
  }else{
    iMin = 1;
  }
  if( argc>=2 ){
    iMax = atoi(argv[1]);
    if( iMax=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
  }else{
    iMax = 50;
  }
  n = iMin;
  if( iMax>iMin ){
    sqliteRandomness(sizeof(r), &r);
    r &= 0x7fffffff;
    n += r%(iMax + 1 - iMin);
  }
  assert( n
func.c361
STATIC VOIDsumStep(sqlite_func *context, int argc, const char **argv)
static void sumStep(sqlite_func *context, int argc, const char **argv){
  SumCtx *p;
  if( argc<1 ) return;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && argv[0] ){
    p->sum += sqliteAtoF(argv[0], 0);
    p->cnt++;
  }
}
func.c413
STATIC VOIDsumFinalize(sqlite_func *context)
static void sumFinalize(sqlite_func *context){
  SumCtx *p;
  p = sqlite_aggregate_context(context, sizeof(*p));
  sqlite_set_result_double(context, p ? p->sum : 0.0);
}
func.c425
STATIC VOIDavgFinalize(sqlite_func *context)
static void avgFinalize(sqlite_func *context){
  SumCtx *p;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && p->cnt>0 ){
    sqlite_set_result_double(context, p->sum/(double)p->cnt);
  }
}

/*
** An instance of the following structure holds the context of a
** variance or standard deviation computation.
*/
typedef struct StdDevCtx StdDevCtx;
struct StdDevCtx {
  double sum;     /* Sum of terms */
  double sum2;    /* Sum of the squares of terms */
  int cnt;        /* Number of terms counted */
};
func.c430
STATIC VOIDstdDevStep(sqlite_func *context, int argc, const char **argv)
static void stdDevStep(sqlite_func *context, int argc, const char **argv){
  StdDevCtx *p;
  double x;
  if( argc<1 ) return;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && argv[0] ){
    x = sqliteAtoF(argv[0], 0);
    p->sum += x;
    p->sum2 += x*x;
    p->cnt++;
  }
}
func.c450
STATIC VOIDstdDevFinalize(sqlite_func *context)
static void stdDevFinalize(sqlite_func *context){
  double rN = sqlite_aggregate_count(context);
  StdDevCtx *p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && p->cnt>1 ){
    double rCnt = cnt;
    sqlite_set_result_double(context, 
       sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0)));
  }
}
#endif

/*
** The following structure keeps track of state information for the
** count() aggregate function.
*/
typedef struct CountCtx CountCtx;
struct CountCtx {
  int n;
};
func.c465
STATIC VOIDcountStep(sqlite_func *context, int argc, const char **argv)
static void countStep(sqlite_func *context, int argc, const char **argv){
  CountCtx *p;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( (argc==0 || argv[0]) && p ){
    p->n++;
  }
}   
func.c485
STATIC VOIDcountFinalize(sqlite_func *context)
static void countFinalize(sqlite_func *context){
  CountCtx *p;
  p = sqlite_aggregate_context(context, sizeof(*p));
  sqlite_set_result_int(context, p ? p->n : 0);
}

/*
** This function tracks state information for the min() and max()
** aggregate functions.
*/
typedef struct MinMaxCtx MinMaxCtx;
struct MinMaxCtx {
  char *z;         /* The best so far */
  char zBuf[28];   /* Space that can be used for storage */
};
func.c495
STATIC VOIDminmaxStep(sqlite_func *context, int argc, const char **argv)
static void minmaxStep(sqlite_func *context, int argc, const char **argv){
  MinMaxCtx *p;
  int (*xCompare)(const char*, const char*);
  int mask;    /* 0 for min() or 0xffffffff for max() */

  assert( argc==2 );
  if( argv[0]==0 ) return;  /* Ignore NULL values */
  if( argv[1][0]=='n' ){
    xCompare = sqliteCompare;
  }else{
    xCompare = strcmp;
  }
  mask = (int)sqlite_user_data(context);
  assert( mask==0 || mask==-1 );
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p==0 || argc<1 ) return;
  if( p->z==0 || (xCompare(argv[0],p->z)^mask)<0 ){
    int len;
    if( p->zBuf[0] ){
      sqliteFree(p->z);
    }
    len = strlen(argv[0]);
    if( len < sizeof(p->zBuf)-1 ){
      p->z = &p->zBuf[1];
      p->zBuf[0] = 0;
    }else{
      p->z = sqliteMalloc( len+1 );
      p->zBuf[0] = 1;
      if( p->z==0 ) return;
    }
    strcpy(p->z, argv[0]);
  }
}
func.c511
STATIC VOIDminMaxFinalize(sqlite_func *context)
static void minMaxFinalize(sqlite_func *context){
  MinMaxCtx *p;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && p->z && p->zBuf[0]<2 ){
    sqlite_set_result_string(context, p->z, strlen(p->z));
  }
  if( p && p->zBuf[0] ){
    sqliteFree(p->z);
  }
}
func.c547
VOIDsqliteRegisterBuiltinFunctions(sqlite *db)
void sqliteRegisterBuiltinFunctions(sqlite *db){
  static struct {
     char *zName;
     signed char nArg;
     signed char dataType;
     u8 argType;               /* 0: none.  1: db  2: (-1) */
     void (*xFunc)(sqlite_func*,int,const char**);
  } aFuncs[] = {
    { "min",       -1, SQLITE_ARGS,    0, minmaxFunc },
    { "min",        0, 0,              0, 0          },
    { "max",       -1, SQLITE_ARGS,    2, minmaxFunc },
    { "max",        0, 0,              2, 0          },
    { "typeof",     1, SQLITE_TEXT,    0, typeofFunc },
    { "length",     1, SQLITE_NUMERIC, 0, lengthFunc },
    { "substr",     3, SQLITE_TEXT,    0, substrFunc },
    { "abs",        1, SQLITE_NUMERIC, 0, absFunc    },
    { "round",      1, SQLITE_NUMERIC, 0, roundFunc  },
    { "round",      2, SQLITE_NUMERIC, 0, roundFunc  },
    { "upper",      1, SQLITE_TEXT,    0, upperFunc  },
    { "lower",      1, SQLITE_TEXT,    0, lowerFunc  },
    { "coalesce",  -1, SQLITE_ARGS,    0, ifnullFunc },
    { "coalesce",   0, 0,              0, 0          },
    { "coalesce",   1, 0,              0, 0          },
    { "ifnull",     2, SQLITE_ARGS,    0, ifnullFunc },
    { "random",    -1, SQLITE_NUMERIC, 0, randomFunc },
    { "like",       2, SQLITE_NUMERIC, 0, likeFunc   },
    { "glob",       2, SQLITE_NUMERIC, 0, globFunc   },
    { "nullif",     2, SQLITE_ARGS,    0, nullifFunc },
    { "sqlite_version",0,SQLITE_TEXT,  0, versionFunc},
    { "quote",      1, SQLITE_ARGS,    0, quoteFunc  },
    { "last_insert_rowid", 0, SQLITE_NUMERIC, 1, last_insert_rowid },
    { "change_count",      0, SQLITE_NUMERIC, 1, change_count      },
    { "last_statement_change_count",
                           0, SQLITE_NUMERIC, 1, last_statement_change_count },
#ifdef SQLITE_SOUNDEX
    { "soundex",    1, SQLITE_TEXT,    0, soundexFunc},
#endif
#ifdef SQLITE_TEST
    { "randstr",    2, SQLITE_TEXT,    0, randStr    },
#endif
  };
  static struct {
    char *zName;
    signed char nArg;
    signed char dataType;
    u8 argType;
    void (*xStep)(sqlite_func*,int,const char**);
    void (*xFinalize)(sqlite_func*);
  } aAggs[] = {
    { "min",    1, 0,              0, minmaxStep,   minMaxFinalize },
    { "max",    1, 0,              2, minmaxStep,   minMaxFinalize },
    { "sum",    1, SQLITE_NUMERIC, 0, sumStep,      sumFinalize    },
    { "avg",    1, SQLITE_NUMERIC, 0, sumStep,      avgFinalize    },
    { "count",  0, SQLITE_NUMERIC, 0, countStep,    countFinalize  },
    { "count",  1, SQLITE_NUMERIC, 0, countStep,    countFinalize  },
#if 0
    { "stddev", 1, SQLITE_NUMERIC, 0, stdDevStep,   stdDevFinalize },
#endif
  };
  static const char *azTypeFuncs[] = { "min", "max", "typeof" };
  int i;

  for(i=0; iaFunc, azTypeFuncs[i], n);
    while( p ){
      p->includeTypes = 1;
      p = p->pNext;
    }
  }
  sqliteRegisterDateTimeFunctions(db);
}
func.c558
hash.c
TypeFunctionSourceLine
VOIDsqliteHashInit(Hash *new, int keyClass, int copyKey)
void sqliteHashInit(Hash *new, int keyClass, int copyKey){
  assert( new!=0 );
  assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY );
  new->keyClass = keyClass;
  new->copyKey = copyKey &&
                (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY);
  new->first = 0;
  new->count = 0;
  new->htsize = 0;
  new->ht = 0;
}
hash.c20
VOIDsqliteHashClear(Hash *pH)
void sqliteHashClear(Hash *pH){
  HashElem *elem;         /* For looping over all elements of the table */

  assert( pH!=0 );
  elem = pH->first;
  pH->first = 0;
  if( pH->ht ) sqliteFree(pH->ht);
  pH->ht = 0;
  pH->htsize = 0;
  while( elem ){
    HashElem *next_elem = elem->next;
    if( pH->copyKey && elem->pKey ){
      sqliteFree(elem->pKey);
    }
    sqliteFree(elem);
    elem = next_elem;
  }
  pH->count = 0;
}
hash.c44
STATIC INTintHash(const void *pKey, int nKey)
static int intHash(const void *pKey, int nKey){
  return nKey ^ (nKey<<8) ^ (nKey>>8);
}
hash.c68
STATIC INTintCompare(const void *pKey1, int n1, const void *pKey2, int n2)
static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
  return n2 - n1;
}
hash.c74
STATIC INTptrHash(const void *pKey, int nKey)
static int ptrHash(const void *pKey, int nKey){
  uptr x = Addr(pKey);
  return x ^ (x<<8) ^ (x>>8);
}
hash.c79
STATIC INTptrCompare(const void *pKey1, int n1, const void *pKey2, int n2)
static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
  if( pKey1==pKey2 ) return 0;
  if( pKey1
hash.c86
STATIC INTstrHash(const void *pKey, int nKey)
static int strHash(const void *pKey, int nKey){
  return sqliteHashNoCase((const char*)pKey, nKey); 
}
hash.c93
STATIC INTstrCompare(const void *pKey1, int n1, const void *pKey2, int n2)
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
  if( n1!=n2 ) return n2-n1;
  return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1);
}
hash.c99
STATIC INTbinHash(const void *pKey, int nKey)
static int binHash(const void *pKey, int nKey){
  int h = 0;
  const char *z = (const char *)pKey;
  while( nKey-- > 0 ){
    h = (h<<3) ^ h ^ *(z++);
  }
  return h & 0x7fffffff;
}
hash.c104
STATIC INTbinCompare(const void *pKey1, int n1, const void *pKey2, int n2)
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
  if( n1!=n2 ) return n2-n1;
  return memcmp(pKey1,pKey2,n1);
}
hash.c115
STATIC INT (*HASHFUNCTION(INT KEYCLASS)(const void*,int)
static int (*hashFunction(int keyClass))(const void*,int){
  switch( keyClass ){
    case SQLITE_HASH_INT:     return &intHash;
    /* case SQLITE_HASH_POINTER: return &ptrHash; // NOT USED */
    case SQLITE_HASH_STRING:  return &strHash;
    case SQLITE_HASH_BINARY:  return &binHash;;
    default: break;
  }
  return 0;
}
hash.c120
STATIC INT (*COMPAREFUNCTION(INT KEYCLASS)(const void*,int,const void*,int)
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
  switch( keyClass ){
    case SQLITE_HASH_INT:     return &intCompare;
    /* case SQLITE_HASH_POINTER: return &ptrCompare; // NOT USED */
    case SQLITE_HASH_STRING:  return &strCompare;
    case SQLITE_HASH_BINARY:  return &binCompare;
    default: break;
  }
  return 0;
}
hash.c143
STATIC VOIDrehash(Hash *pH, int new_size)
static void rehash(Hash *pH, int new_size){
  struct _ht *new_ht;            /* The new hash table */
  HashElem *elem, *next_elem;    /* For looping over existing elements */
  HashElem *x;                   /* Element being copied to new hash table */
  int (*xHash)(const void*,int); /* The hash function */

  assert( (new_size & (new_size-1))==0 );
  new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) );
  if( new_ht==0 ) return;
  if( pH->ht ) sqliteFree(pH->ht);
  pH->ht = new_ht;
  pH->htsize = new_size;
  xHash = hashFunction(pH->keyClass);
  for(elem=pH->first, pH->first=0; elem; elem = next_elem){
    int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
    next_elem = elem->next;
    x = new_ht[h].chain;
    if( x ){
      elem->next = x;
      elem->prev = x->prev;
      if( x->prev ) x->prev->next = elem;
      else          pH->first = elem;
      x->prev = elem;
    }else{
      elem->next = pH->first;
      if( pH->first ) pH->first->prev = elem;
      elem->prev = 0;
      pH->first = elem;
    }
    new_ht[h].chain = elem;
    new_ht[h].count++;
  }
}
hash.c161
STATIC HASHELEM findElementGivenHash( const Hash *pH, const void *pKey, int nKey, int h )
static HashElem *findElementGivenHash(
  const Hash *pH,     /* The pH to be searched */
  const void *pKey,   /* The key we are searching for */
  int nKey,
  int h               /* The hash for this key. */
){
  HashElem *elem;                /* Used to loop thru the element list */
  int count;                     /* Number of elements left to test */
  int (*xCompare)(const void*,int,const void*,int);  /* comparison function */

  if( pH->ht ){
    elem = pH->ht[h].chain;
    count = pH->ht[h].count;
    xCompare = compareFunction(pH->keyClass);
    while( count-- && elem ){
      if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
        return elem;
      }
      elem = elem->next;
    }
  }
  return 0;
}
hash.c199
STATIC VOIDremoveElementGivenHash( Hash *pH, HashElem* elem, int h )
static void removeElementGivenHash(
  Hash *pH,         /* The pH containing "elem" */
  HashElem* elem,   /* The element to be removed from the pH */
  int h             /* Hash value for the element */
){
  if( elem->prev ){
    elem->prev->next = elem->next; 
  }else{
    pH->first = elem->next;
  }
  if( elem->next ){
    elem->next->prev = elem->prev;
  }
  if( pH->ht[h].chain==elem ){
    pH->ht[h].chain = elem->next;
  }
  pH->ht[h].count--;
  if( pH->ht[h].count<=0 ){
    pH->ht[h].chain = 0;
  }
  if( pH->copyKey && elem->pKey ){
    sqliteFree(elem->pKey);
  }
  sqliteFree( elem );
  pH->count--;
}
hash.c227
VOID sqliteHashFind(const Hash *pH, const void *pKey, int nKey)
void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){
  int h;             /* A hash on key */
  HashElem *elem;    /* The element that matches key */
  int (*xHash)(const void*,int);  /* The hash function */

  if( pH==0 || pH->ht==0 ) return 0;
  xHash = hashFunction(pH->keyClass);
  assert( xHash!=0 );
  h = (*xHash)(pKey,nKey);
  assert( (pH->htsize & (pH->htsize-1))==0 );
  elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
  return elem ? elem->data : 0;
}
hash.c257
VOID sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data)
void *sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data){
  int hraw;             /* Raw hash value of the key */
  int h;                /* the hash of the key modulo hash table size */
  HashElem *elem;       /* Used to loop thru the element list */
  HashElem *new_elem;   /* New element added to the pH */
  int (*xHash)(const void*,int);  /* The hash function */

  assert( pH!=0 );
  xHash = hashFunction(pH->keyClass);
  assert( xHash!=0 );
  hraw = (*xHash)(pKey, nKey);
  assert( (pH->htsize & (pH->htsize-1))==0 );
  h = hraw & (pH->htsize-1);
  elem = findElementGivenHash(pH,pKey,nKey,h);
  if( elem ){
    void *old_data = elem->data;
    if( data==0 ){
      removeElementGivenHash(pH,elem,h);
    }else{
      elem->data = data;
    }
    return old_data;
  }
  if( data==0 ) return 0;
  new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) );
  if( new_elem==0 ) return data;
  if( pH->copyKey && pKey!=0 ){
    new_elem->pKey = sqliteMallocRaw( nKey );
    if( new_elem->pKey==0 ){
      sqliteFree(new_elem);
      return data;
    }
    memcpy((void*)new_elem->pKey, pKey, nKey);
  }else{
    new_elem->pKey = (void*)pKey;
  }
  new_elem->nKey = nKey;
  pH->count++;
  if( pH->htsize==0 ) rehash(pH,8);
  if( pH->htsize==0 ){
    pH->count = 0;
    sqliteFree(new_elem);
    return data;
  }
  if( pH->count > pH->htsize ){
    rehash(pH,pH->htsize*2);
  }
  assert( (pH->htsize & (pH->htsize-1))==0 );
  h = hraw & (pH->htsize-1);
  elem = pH->ht[h].chain;
  if( elem ){
    new_elem->next = elem;
    new_elem->prev = elem->prev;
    if( elem->prev ){ elem->prev->next = new_elem; }
    else            { pH->first = new_elem; }
    elem->prev = new_elem;
  }else{
    new_elem->next = pH->first;
    new_elem->prev = 0;
    if( pH->first ){ pH->first->prev = new_elem; }
    pH->first = new_elem;
  }
  pH->ht[h].count++;
  pH->ht[h].chain = new_elem;
  new_elem->data = data;
  return 0;
}
hash.c275
hbsqlit2.c
TypeFunctionSourceLine
HB_FUNCSQLITE_INFO(void)
HB_FUNC( SQLITE_INFO )
{
   hb_reta( 3 );
   hb_storc( ( char * ) SQLITE_VERSION      , -1, 1 );
   hb_storc( ( char * ) sqlite_libversion() , -1, 2 );
   hb_storc( ( char * ) sqlite_libencoding(), -1, 3 );
}
hbsqlit2.c51
HB_FUNCSQLITE_OPEN(void)
HB_FUNC( SQLITE_OPEN )
{
   if( hb_sqlite2_db )
      sqlite_close( hb_sqlite2_db );

   hb_sqlite2_db = ( sqlite * ) sqlite_open( hb_parcx( 1 ), 0, &hb_sqlite2_szErrMsg );

   hb_retni( hb_sqlite2_db == NULL ? 1 : 0 ); /* error: 1 */
}
hbsqlit2.c60
HB_FUNCSQLITE_CLOSE(void)
HB_FUNC( SQLITE_CLOSE )
{
   if( hb_sqlite2_db )
   {
      sqlite_close( hb_sqlite2_db );
      hb_sqlite2_db = NULL;
   }
}
hbsqlit2.c71
HB_FUNCSQLITE_EXECUTE(void)
HB_FUNC( SQLITE_EXECUTE )
{
   if( hb_sqlite2_db )
      hb_retni( sqlite_exec( hb_sqlite2_db, hb_parcx( 1 ), NULL, NULL, &hb_sqlite2_szErrMsg ) );
}
hbsqlit2.c81
HB_FUNCSQLITE_QUERY(void)
HB_FUNC( SQLITE_QUERY )
{
   char * szSQLcom = hb_parcx( 1 );

   if( hb_sqlite2_db && sqlite_exec( hb_sqlite2_db, szSQLcom, NULL, NULL, &hb_sqlite2_szErrMsg ) == SQLITE_OK )
   {
      int iResRows = 0;
      int iResCols = 0;
      int iRec;
      int iField;
      char * pErrmsg;
      char ** pResStr;
      PHB_ITEM paRows;
      int i;

      /* put here a routine to process results */
      sqlite_get_table( hb_sqlite2_db, /* An open database */
                        szSQLcom,      /* SQL to be executed */
                        &pResStr,      /* Result written to a char *[]  that this points to */
                        &iResRows,     /* Number of result rows written here */
                        &iResCols,     /* Number of result columns written here */
                        &pErrmsg       /* Error msg written here */
                      );

      /* global results */
      hb_sqlite2_iDataRows = iResRows;  /* set rows from last operation */
      hb_sqlite2_iDataCols = iResCols;  /* set cols from last operation */

      /* quiero devolver un array bidimensional donde la cantidad de filas
         es rows +1 (ó reccords +1 ) y las columnas los campos
         la primer fila contiene los encabezados de los campos */

      /* dimension rows array */
      paRows = hb_itemArrayNew( iResRows + 1 );

      for( iRec = 0, i = 0; iRec < iResRows + 1; iRec++ )
      {
         if( iResCols > 1 ) /* if it's a multidimensional array */
         {
            PHB_ITEM paCols = hb_itemArrayNew( iResCols );

            /* for every field */
            for( iField = 0; iField < iResCols; iField++ )
               hb_arraySetC( paCols, iField + 1, pResStr[ i++ ] );

            /* put data onto subarray of records */
            hb_itemArrayPut( paRows, iRec + 1, paCols );
            hb_itemRelease( paCols );
         }
         else /* is an unidimensional array */
            hb_arraySetC( paRows, iRec + 1, pResStr[ i++ ] );
      }

      /* free memory allocated */
      sqlite_free_table( pResStr );

      hb_itemReturnRelease( paRows );
   }
   else
      hb_reta( 0 );
}
hbsqlit2.c88
HB_FUNCSQLITE_SYSCOLUMNS(void)
HB_FUNC( SQLITE_SYSCOLUMNS )
{
   if( hb_sqlite2_db )
   {
      struct Table * pTable = ( struct Table * ) sqliteFindTable( hb_sqlite2_db, ( const char * ) hb_parcx( 1 ), NULL );
   
      if( pTable )
      {
         /* dimension rows array:
            1 is table name
            2 is field number
            3 to n cols data */ 
         PHB_ITEM paRows = hb_itemArrayNew( 2 + pTable->nCol );   
         int iField;
                                                         
         /* the Table structure itself */
         hb_arraySetC( paRows, 1, pTable->zName ); /* save name of table */
         hb_arraySetNL( paRows, 2, pTable->nCol ); /* save number of cols/fields */
   
         for( iField = 0; iField < pTable->nCol; iField++ )
         {
            /* it's a multidimensional array */
            /* four data columns name, default, type, isprimarykey per field */
            PHB_ITEM paCols = hb_itemArrayNew( 4 );
   
            hb_arraySetC( paCols, 1, pTable->aCol[ iField ].zName );
            hb_arraySetC( paCols, 2, pTable->aCol[ iField ].zDflt );
            hb_arraySetC( paCols, 3, pTable->aCol[ iField ].zType );
            hb_arraySetL( paCols, 4, pTable->aCol[ iField ].isPrimKey );
   
            /* put data onto subarray of records */
            hb_itemArrayPut( paRows, 3 + iField, paCols );
            hb_itemRelease( paCols );
         }
   
         hb_itemReturnRelease( paRows );
         return;
      }
   }

   hb_reta( 0 );
}
hbsqlit2.c151
HB_FUNCSQLITE_FIELDS(void)
HB_FUNC( SQLITE_FIELDS )
{
   if( hb_sqlite2_db )
   {
      struct Table * pTable = ( struct Table * ) sqliteFindTable( hb_sqlite2_db, ( const char * ) hb_parcx( 1 ), NULL );
      
      if( pTable )
      {
         int i;
      
         /* the Table structure itself */
         hb_reta( pTable->nCol );
      
         for( i = 0; i < pTable->nCol; i++ )
            hb_storc( pTable->aCol[ i ].zName, -1, 1 + i );

         return;
      }
   }

   hb_reta( 0 );
}
hbsqlit2.c195
HB_FUNCSQLITE_NUMOFTABLES(void)
HB_FUNC( SQLITE_NUMOFTABLES )
{
   hb_retni( hb_sqlite2_db ? hb_sqlite2_db->nTable - 2 : 0 );
}
hbsqlit2.c219
HB_FUNCSQLITE_ERROR(void)
HB_FUNC( SQLITE_ERROR )
{
   hb_retc( hb_sqlite2_szErrMsg );
}
hbsqlit2.c225
HB_FUNCSQLITE_GETROWS(void)
HB_FUNC( SQLITE_GETROWS )
{
   hb_retni( hb_sqlite2_iDataRows );
}
hbsqlit2.c231
HB_FUNCSQLITE_GETCOLS(void)
HB_FUNC( SQLITE_GETCOLS )
{
   hb_retni( hb_sqlite2_iDataCols );
}
hbsqlit2.c237
insert.c
TypeFunctionSourceLine
VOIDsqliteInsert( Parse *pParse, SrcList *pTabList, ExprList *pList, Select *pSelect, IdList *pColumn, int onError )
void sqliteInsert(
  Parse *pParse,        /* Parser context */
  SrcList *pTabList,    /* Name of table into which we are inserting */
  ExprList *pList,      /* List of values to be inserted */
  Select *pSelect,      /* A SELECT statement to use as the data source */
  IdList *pColumn,      /* Column names corresponding to IDLIST. */
  int onError           /* How to handle constraint errors */
){
  Table *pTab;          /* The table to insert into */
  char *zTab;           /* Name of the table into which we are inserting */
  const char *zDb;      /* Name of the database holding this table */
  int i, j, idx;        /* Loop counters */
  Vdbe *v;              /* Generate code into this virtual machine */
  Index *pIdx;          /* For looping over indices of the table */
  int nColumn;          /* Number of columns in the data */
  int base;             /* VDBE Cursor number for pTab */
  int iCont, iBreak;    /* Beginning and end of the loop over srcTab */
  sqlite *db;           /* The main database structure */
  int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
  int endOfLoop;        /* Label for the end of the insertion loop */
  int useTempTable;     /* Store SELECT results in intermediate table */
  int srcTab;           /* Data comes from this temporary cursor if >=0 */
  int iSelectLoop;      /* Address of code that implements the SELECT */
  int iCleanup;         /* Address of the cleanup code */
  int iInsertBlock;     /* Address of the subroutine used to insert data */
  int iCntMem;          /* Memory cell used for the row counter */
  int isView;           /* True if attempting to insert into a view */

  int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
  int before_triggers;        /* True if there are BEFORE triggers */
  int after_triggers;         /* True if there are AFTER triggers */
  int newIdx = -1;            /* Cursor for the NEW table */

  if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
  db = pParse->db;

  /* Locate the table into which we will be inserting new information.
  */
  assert( pTabList->nSrc==1 );
  zTab = pTabList->a[0].zName;
  if( zTab==0 ) goto insert_cleanup;
  pTab = sqliteSrcListLookup(pParse, pTabList);
  if( pTab==0 ){
    goto insert_cleanup;
  }
  assert( pTab->iDbnDb );
  zDb = db->aDb[pTab->iDb].zName;
  if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
    goto insert_cleanup;
  }

  /* Ensure that:
  *  (a) the table is not read-only, 
  *  (b) that if it is a view then ON INSERT triggers exist
  */
  before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, 
                                       TK_BEFORE, TK_ROW, 0);
  after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
                                       TK_AFTER, TK_ROW, 0);
  row_triggers_exist = before_triggers || after_triggers;
  isView = pTab->pSelect!=0;
  if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
    goto insert_cleanup;
  }
  if( pTab==0 ) goto insert_cleanup;

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
    goto insert_cleanup;
  }

  /* Allocate a VDBE
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) goto insert_cleanup;
  sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb);

  /* if there are row triggers, allocate a temp table for new.* references. */
  if( row_triggers_exist ){
    newIdx = pParse->nTab++;
  }

  /* Figure out how many columns of data are supplied.  If the data
  ** is coming from a SELECT statement, then this step also generates
  ** all the code to implement the SELECT statement and invoke a subroutine
  ** to process each row of the result. (Template 2.) If the SELECT
  ** statement uses the the table that is being inserted into, then the
  ** subroutine is also coded here.  That subroutine stores the SELECT
  ** results in a temporary table. (Template 3.)
  */
  if( pSelect ){
    /* Data is coming from a SELECT.  Generate code to implement that SELECT
    */
    int rc, iInitCode;
    iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
    iSelectLoop = sqliteVdbeCurrentAddr(v);
    iInsertBlock = sqliteVdbeMakeLabel(v);
    rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
    if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
    iCleanup = sqliteVdbeMakeLabel(v);
    sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table.  Set to FALSE if each
    ** row of the SELECT can be written directly into the result table.
    **
    ** A temp table must be used if the table being updated is also one
    ** of the tables being read by the SELECT statement.  Also use a 
    ** temp table in the case of row triggers.
    */
    if( row_triggers_exist ){
      useTempTable = 1;
    }else{
      int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum);
      useTempTable = 0;
      if( addr>0 ){
        VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2);
        if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){
          useTempTable = 1;
        }
      }
    }

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */
      srcTab = pParse->nTab++;
      sqliteVdbeResolveLabel(v, iInsertBlock);
      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
      sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
      sqliteVdbeAddOp(v, OP_Pull, 1, 0);
      sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
      sqliteVdbeAddOp(v, OP_Return, 0, 0);

      /* The following code runs first because the GOTO at the very top
      ** of the program jumps to it.  Create the temporary table, then jump
      ** back up and execute the SELECT code above.
      */
      sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
      sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
      sqliteVdbeResolveLabel(v, iCleanup);
    }else{
      sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
    }
  }else{
    /* This is the case if the data for the INSERT is coming from a VALUES
    ** clause
    */
    SrcList dummy;
    assert( pList!=0 );
    srcTab = -1;
    useTempTable = 0;
    assert( pList );
    nColumn = pList->nExpr;
    dummy.nSrc = 0;
    for(i=0; ia[i].pExpr) ){
        goto insert_cleanup;
      }
      if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
        goto insert_cleanup;
      }
    }
  }

  /* Make sure the number of columns in the source data matches the number
  ** of columns to be inserted into the table.
  */
  if( pColumn==0 && nColumn!=pTab->nCol ){
    sqliteErrorMsg(pParse, 
       "table %S has %d columns but %d values were supplied",
       pTabList, 0, pTab->nCol, nColumn);
    goto insert_cleanup;
  }
  if( pColumn!=0 && nColumn!=pColumn->nId ){
    sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
    goto insert_cleanup;
  }

  /* If the INSERT statement included an IDLIST term, then make sure
  ** all elements of the IDLIST really are columns of the table and 
  ** remember the column indices.
  **
  ** If the table has an INTEGER PRIMARY KEY column and that column
  ** is named in the IDLIST, then record in the keyColumn variable
  ** the index into IDLIST of the primary key column.  keyColumn is
  ** the index of the primary key as it appears in IDLIST, not as
  ** is appears in the original table.  (The index of the primary
  ** key in the original table is pTab->iPKey.)
  */
  if( pColumn ){
    for(i=0; inId; i++){
      pColumn->a[i].idx = -1;
    }
    for(i=0; inId; i++){
      for(j=0; jnCol; j++){
        if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
          pColumn->a[i].idx = j;
          if( j==pTab->iPKey ){
            keyColumn = i;
          }
          break;
        }
      }
      if( j>=pTab->nCol ){
        if( sqliteIsRowid(pColumn->a[i].zName) ){
          keyColumn = i;
        }else{
          sqliteErrorMsg(pParse, "table %S has no column named %s",
              pTabList, 0, pColumn->a[i].zName);
          pParse->nErr++;
          goto insert_cleanup;
        }
      }
    }
  }

  /* If there is no IDLIST term but the table has an integer primary
  ** key, the set the keyColumn variable to the primary key column index
  ** in the original table definition.
  */
  if( pColumn==0 ){
    keyColumn = pTab->iPKey;
  }

  /* Open the temp table for FOR EACH ROW triggers
  */
  if( row_triggers_exist ){
    sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
  }
    
  /* Initialize the count of rows to be inserted
  */
  if( db->flags & SQLITE_CountRows ){
    iCntMem = pParse->nMem++;
    sqliteVdbeAddOp(v, OP_Integer, 0, 0);
    sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
  }

  /* Open tables and indices if there are no row triggers */
  if( !row_triggers_exist ){
    base = pParse->nTab;
    idx = sqliteOpenTableAndIndices(pParse, pTab, base);
    pParse->nTab += idx;
  }

  /* If the data source is a temporary table, then we have to create
  ** a loop because there might be multiple rows of data.  If the data
  ** source is a subroutine call from the SELECT statement, then we need
  ** to launch the SELECT statement processing.
  */
  if( useTempTable ){
    iBreak = sqliteVdbeMakeLabel(v);
    sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
    iCont = sqliteVdbeCurrentAddr(v);
  }else if( pSelect ){
    sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
    sqliteVdbeResolveLabel(v, iInsertBlock);
  }

  /* Run the BEFORE and INSTEAD OF triggers, if there are any
  */
  endOfLoop = sqliteVdbeMakeLabel(v);
  if( before_triggers ){

    /* build the NEW.* reference row.  Note that if there is an INTEGER
    ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
    ** translated into a unique ID for the row.  But on a BEFORE trigger,
    ** we do not know what the unique ID will be (because the insert has
    ** not happened yet) so we substitute a rowid of -1
    */
    if( keyColumn<0 ){
      sqliteVdbeAddOp(v, OP_Integer, -1, 0);
    }else if( useTempTable ){
      sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
    }else if( pSelect ){
      sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
    }else{
      sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
      sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      sqliteVdbeAddOp(v, OP_Integer, -1, 0);
      sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
    }

    /* Create the new column data
    */
    for(i=0; inCol; i++){
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; jnId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( pColumn && j>=pColumn->nId ){
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
      }else if( useTempTable ){
        sqliteVdbeAddOp(v, OP_Column, srcTab, j); 
      }else if( pSelect ){
        sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
      }else{
        sqliteExprCode(pParse, pList->a[j].pExpr);
      }
    }
    sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);

    /* Fire BEFORE or INSTEAD OF triggers */
    if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, 
        newIdx, -1, onError, endOfLoop) ){
      goto insert_cleanup;
    }
  }

  /* If any triggers exists, the opening of tables and indices is deferred
  ** until now.
  */
  if( row_triggers_exist && !isView ){
    base = pParse->nTab;
    idx = sqliteOpenTableAndIndices(pParse, pTab, base);
    pParse->nTab += idx;
  }

  /* Push the record number for the new entry onto the stack.  The
  ** record number is a randomly generate integer created by NewRecno
  ** except when the table has an INTEGER PRIMARY KEY column, in which
  ** case the record number is the same as that column. 
  */
  if( !isView ){
    if( keyColumn>=0 ){
      if( useTempTable ){
        sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
      }else if( pSelect ){
        sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
      }else{
        sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
      }
      /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
      ** to generate a unique primary key value.
      */
      sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
      sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
    }else{
      sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
    }

    /* Push onto the stack, data for all columns of the new entry, beginning
    ** with the first column.
    */
    for(i=0; inCol; i++){
      if( i==pTab->iPKey ){
        /* The value of the INTEGER PRIMARY KEY column is always a NULL.
        ** Whenever this column is read, the record number will be substituted
        ** in its place.  So will fill this column with a NULL to avoid
        ** taking up data space with information that will never be used. */
        sqliteVdbeAddOp(v, OP_String, 0, 0);
        continue;
      }
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; jnId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( pColumn && j>=pColumn->nId ){
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
      }else if( useTempTable ){
        sqliteVdbeAddOp(v, OP_Column, srcTab, j); 
      }else if( pSelect ){
        sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
      }else{
        sqliteExprCode(pParse, pList->a[j].pExpr);
      }
    }

    /* Generate code to check constraints and generate index keys and
    ** do the insertion.
    */
    sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
                                   0, onError, endOfLoop);
    sqliteCompleteInsertion(pParse, pTab, base, 0,0,0,
                            after_triggers ? newIdx : -1);
  }

  /* Update the count of rows that are inserted
  */
  if( (db->flags & SQLITE_CountRows)!=0 ){
    sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
  }

  if( row_triggers_exist ){
    /* Close all tables opened */
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Close, base, 0);
      for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
        sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
      }
    }

    /* Code AFTER triggers */
    if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1, 
          onError, endOfLoop) ){
      goto insert_cleanup;
    }
  }

  /* The bottom of the loop, if the data source is a SELECT statement
  */
  sqliteVdbeResolveLabel(v, endOfLoop);
  if( useTempTable ){
    sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
    sqliteVdbeResolveLabel(v, iBreak);
    sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
  }else if( pSelect ){
    sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
    sqliteVdbeAddOp(v, OP_Return, 0, 0);
    sqliteVdbeResolveLabel(v, iCleanup);
  }

  if( !row_triggers_exist ){
    /* Close all tables opened */
    sqliteVdbeAddOp(v, OP_Close, base, 0);
    for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
      sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
    }
  }

  sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
  sqliteEndWriteOperation(pParse);

  /*
  ** Return the number of rows inserted.
  */
  if( db->flags & SQLITE_CountRows ){
    sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows inserted", P3_STATIC);
    sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
    sqliteVdbeAddOp(v, OP_Callback, 1, 0);
  }

insert_cleanup:
  sqliteSrcListDelete(pTabList);
  if( pList ) sqliteExprListDelete(pList);
  if( pSelect ) sqliteSelectDelete(pSelect);
  sqliteIdListDelete(pColumn);
}
insert.c19
VOIDsqliteGenerateConstraintChecks( Parse *pParse, Table *pTab, int base, char *aIdxUsed, int recnoChng, int isUpdate, int overrideError, int ignoreDest )
void sqliteGenerateConstraintChecks(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int base,           /* Index of a read/write cursor pointing at pTab */
  char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
  int recnoChng,      /* True if the record number will change */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int overrideError,  /* Override onError to this if not OE_Default */
  int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
){
  int i;
  Vdbe *v;
  int nCol;
  int onError;
  int addr;
  int extra;
  int iCur;
  Index *pIdx;
  int seenReplace = 0;
  int jumpInst1, jumpInst2;
  int contAddr;
  int hasTwoRecnos = (isUpdate && recnoChng);

  v = sqliteGetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;

  /* Test all NOT NULL constraints.
  */
  for(i=0; iiPKey ){
      continue;
    }
    onError = pTab->aCol[i].notNull;
    if( onError==OE_None ) continue;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( pParse->db->onError!=OE_Default ){
      onError = pParse->db->onError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
      onError = OE_Abort;
    }
    sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
    addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        char *zMsg = 0;
        sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
        sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
                        " may not be NULL", (char*)0);
        sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
        sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
        break;
      }
      default: assert(0);
    }
    sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
  }

  /* Test all CHECK constraints
  */
  /**** TBD ****/

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
  ** of the new record does not previously exist.  Except, if this
  ** is an UPDATE and the primary key is not changing, that is OK.
  */
  if( recnoChng ){
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( pParse->db->onError!=OE_Default ){
      onError = pParse->db->onError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    
    if( isUpdate ){
      sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
      sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
      jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
    }
    sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
    jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
                         "PRIMARY KEY must be unique", P3_STATIC);
        break;
      }
      case OE_Replace: {
        sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0);
        if( isUpdate ){
          sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1);
          sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
        }
        seenReplace = 1;
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
    }
    contAddr = sqliteVdbeCurrentAddr(v);
    sqliteVdbeChangeP2(v, jumpInst2, contAddr);
    if( isUpdate ){
      sqliteVdbeChangeP2(v, jumpInst1, contAddr);
      sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
      sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Add the new records to the indices as we go.
  */
  extra = -1;
  for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
    if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
    extra++;

    /* Create a key for accessing the index entry */
    sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
    for(i=0; inColumn; i++){
      int idx = pIdx->aiColumn[i];
      if( idx==pTab->iPKey ){
        sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
      }else{
        sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
      }
    }
    jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
    if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( pParse->db->onError!=OE_Default ){
      onError = pParse->db->onError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( seenReplace ){
      if( onError==OE_Ignore ) onError = OE_Replace;
      else if( onError==OE_Fail ) onError = OE_Abort;
    }
    

    /* Check to see if the new index entry will be unique */
    sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
    jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);

    /* Generate code that executes if the new index entry is not unique */
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        int j, n1, n2;
        char zErrMsg[200];
        strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
        n1 = strlen(zErrMsg);
        for(j=0; jnColumn && n1aCol[pIdx->aiColumn[j]].zName;
          n2 = strlen(zCol);
          if( j>0 ){
            strcpy(&zErrMsg[n1], ", ");
            n1 += 2;
          }
          if( n1+n2>sizeof(zErrMsg)-30 ){
            strcpy(&zErrMsg[n1], "...");
            n1 += 3;
            break;
          }else{
            strcpy(&zErrMsg[n1], zCol);
            n1 += n2;
          }
        }
        strcpy(&zErrMsg[n1], 
            pIdx->nColumn>1 ? " are not unique" : " is not unique");
        sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
        if( isUpdate ){
          sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
          sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
        }
        seenReplace = 1;
        break;
      }
      default: assert(0);
    }
    contAddr = sqliteVdbeCurrentAddr(v);
#if NULL_DISTINCT_FOR_UNIQUE
    sqliteVdbeChangeP2(v, jumpInst1, contAddr);
#endif
    sqliteVdbeChangeP2(v, jumpInst2, contAddr);
  }
}
insert.c541
VOIDsqliteCompleteInsertion( Parse *pParse, Table *pTab, int base, char *aIdxUsed, int recnoChng, int isUpdate, int newIdx )
void sqliteCompleteInsertion(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int base,           /* Index of a read/write cursor pointing at pTab */
  char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
  int recnoChng,      /* True if the record number will change */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int newIdx          /* Index of NEW table for triggers.  -1 if none */
){
  int i;
  Vdbe *v;
  int nIdx;
  Index *pIdx;

  v = sqliteGetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  for(i=nIdx-1; i>=0; i--){
    if( aIdxUsed && aIdxUsed[i]==0 ) continue;
    sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
  }
  sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
  if( newIdx>=0 ){
    sqliteVdbeAddOp(v, OP_Dup, 1, 0);
    sqliteVdbeAddOp(v, OP_Dup, 1, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
  }
  sqliteVdbeAddOp(v, OP_PutIntKey, base,
    (pParse->trigStack?0:OPFLAG_NCHANGE) |
    (isUpdate?0:OPFLAG_LASTROWID) | OPFLAG_CSCHANGE);
  if( isUpdate && recnoChng ){
    sqliteVdbeAddOp(v, OP_Pop, 1, 0);
  }
}
insert.c853
INTsqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base)
int sqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base){
  int i;
  Index *pIdx;
  Vdbe *v = sqliteGetVdbe(pParse);
  assert( v!=0 );
  sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
  sqliteVdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqliteVdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum, pIdx->zName, P3_STATIC);
  }
  return i;
}
insert.c899
main.c
TypeFunctionSourceLine
STATIC VOIDcorruptSchema(InitData *pData, const char *zExtra)
static void corruptSchema(InitData *pData, const char *zExtra){
  sqliteSetString(pData->pzErrMsg, "malformed database schema",
     zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
}
main.c32
STATIC INTsqliteInitCallback(void *pInit, int argc, char **argv, char **azColName)
static
int sqliteInitCallback(void *pInit, int argc, char **argv, char **azColName){
  InitData *pData = (InitData*)pInit;
  int nErr = 0;

  assert( argc==5 );
  if( argv==0 ) return 0;   /* Might happen if EMPTY_RESULT_CALLBACKS are on */
  if( argv[0]==0 ){
    corruptSchema(pData, 0);
    return 1;
  }
  switch( argv[0][0] ){
    case 'v':
    case 'i':
    case 't': {  /* CREATE TABLE, CREATE INDEX, or CREATE VIEW statements */
      sqlite *db = pData->db;
      if( argv[2]==0 || argv[4]==0 ){
        corruptSchema(pData, 0);
        return 1;
      }
      if( argv[3] && argv[3][0] ){
        /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
        ** But because db->init.busy is set to 1, no VDBE code is generated
        ** or executed.  All the parser does is build the internal data
        ** structures that describe the table, index, or view.
        */
        char *zErr;
        assert( db->init.busy );
        db->init.iDb = atoi(argv[4]);
        assert( db->init.iDb>=0 && db->init.iDbnDb );
        db->init.newTnum = atoi(argv[2]);
        if( sqlite_exec(db, argv[3], 0, 0, &zErr) ){
          corruptSchema(pData, zErr);
          sqlite_freemem(zErr);
        }
        db->init.iDb = 0;
      }else{
        /* If the SQL column is blank it means this is an index that
        ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
        ** constraint for a CREATE TABLE.  The index should have already
        ** been created when we processed the CREATE TABLE.  All we have
        ** to do here is record the root page number for that index.
        */
        int iDb;
        Index *pIndex;

        iDb = atoi(argv[4]);
        assert( iDb>=0 && iDbnDb );
        pIndex = sqliteFindIndex(db, argv[1], db->aDb[iDb].zName);
        if( pIndex==0 || pIndex->tnum!=0 ){
          /* This can occur if there exists an index on a TEMP table which
          ** has the same name as another index on a permanent index.  Since
          ** the permanent table is hidden by the TEMP table, we can also
          ** safely ignore the index on the permanent table.
          */
          /* Do Nothing */;
        }else{
          pIndex->tnum = atoi(argv[2]);
        }
      }
      break;
    }
    default: {
      /* This can not happen! */
      nErr = 1;
      assert( nErr==0 );
    }
  }
  return nErr;
}
main.c41
STATIC INTupgrade_3_callback(void *pInit, int argc, char **argv, char **NotUsed)
static
int upgrade_3_callback(void *pInit, int argc, char **argv, char **NotUsed){
  InitData *pData = (InitData*)pInit;
  int rc;
  Table *pTab;
  Trigger *pTrig;
  char *zErr = 0;

  pTab = sqliteFindTable(pData->db, argv[0], 0);
  assert( pTab!=0 );
  assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
  if( pTab ){
    pTrig = pTab->pTrigger;
    pTab->pTrigger = 0;  /* Disable all triggers before rebuilding the table */
  }
  rc = sqlite_exec_printf(pData->db,
    "CREATE TEMP TABLE sqlite_x AS SELECT * FROM '%q'; "
    "DELETE FROM '%q'; "
    "INSERT INTO '%q' SELECT * FROM sqlite_x; "
    "DROP TABLE sqlite_x;",
    0, 0, &zErr, argv[0], argv[0], argv[0]);
  if( zErr ){
    if( *pData->pzErrMsg ) sqlite_freemem(*pData->pzErrMsg);
    *pData->pzErrMsg = zErr;
  }

  /* If an error occurred in the SQL above, then the transaction will
  ** rollback which will delete the internal symbol tables.  This will
  ** cause the structure that pTab points to be deleted.  In case that
  ** happened, we need to refetch pTab.
  */
  pTab = sqliteFindTable(pData->db, argv[0], 0);
  if( pTab ){
    assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
    pTab->pTrigger = pTrig;  /* Re-enable triggers */
  }
  return rc!=SQLITE_OK;
}
main.c126
STATIC INTsqliteInitOne(sqlite *db, int iDb, char **pzErrMsg)
static int sqliteInitOne(sqlite *db, int iDb, char **pzErrMsg){
  int rc;
  BtCursor *curMain;
  int size;
  Table *pTab;
  char const *azArg[6];
  char zDbNum[30];
  int meta[SQLITE_N_BTREE_META];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName;
  char *zSql = 0;

  /*
  ** The master database table has a structure like this
  */
  static char master_schema[] = 
     "CREATE TABLE sqlite_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
  static char temp_master_schema[] = 
     "CREATE TEMP TABLE sqlite_temp_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;

  assert( iDb>=0 && iDbnDb );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( iDb==1 ){
    zMasterSchema = temp_master_schema;
    zMasterName = TEMP_MASTER_NAME;
  }else{
    zMasterSchema = master_schema;
    zMasterName = MASTER_NAME;
  }

  /* Construct the schema table.
  */
  sqliteSafetyOff(db);
  azArg[0] = "table";
  azArg[1] = zMasterName;
  azArg[2] = "2";
  azArg[3] = zMasterSchema;
  sprintf(zDbNum, "%d", iDb);
  azArg[4] = zDbNum;
  azArg[5] = 0;
  initData.db = db;
  initData.pzErrMsg = pzErrMsg;
  sqliteInitCallback(&initData, 5, (char **)azArg, 0);
  pTab = sqliteFindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->readOnly = 1;
  }else{
    return SQLITE_NOMEM;
  }
  sqliteSafetyOn(db);

  /* Create a cursor to hold the database open
  */
  if( db->aDb[iDb].pBt==0 ) return SQLITE_OK;
  rc = sqliteBtreeCursor(db->aDb[iDb].pBt, 2, 0, &curMain);
  if( rc ){
    sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
    return rc;
  }

  /* Get the database meta information
  */
  rc = sqliteBtreeGetMeta(db->aDb[iDb].pBt, meta);
  if( rc ){
    sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
    sqliteBtreeCloseCursor(curMain);
    return rc;
  }
  db->aDb[iDb].schema_cookie = meta[1];
  if( iDb==0 ){
    db->next_cookie = meta[1];
    db->file_format = meta[2];
    size = meta[3];
    if( size==0 ){ size = MAX_PAGES; }
    db->cache_size = size;
    db->safety_level = meta[4];
    if( meta[6]>0 && meta[6]<=2 && db->temp_store==0 ){
      db->temp_store = meta[6];
    }
    if( db->safety_level==0 ) db->safety_level = 2;

    /*
    **  file_format==1    Version 2.1.0.
    **  file_format==2    Version 2.2.0. Add support for INTEGER PRIMARY KEY.
    **  file_format==3    Version 2.6.0. Fix empty-string index bug.
    **  file_format==4    Version 2.7.0. Add support for separate numeric and
    **                    text datatypes.
    */
    if( db->file_format==0 ){
      /* This happens if the database was initially empty */
      db->file_format = 4;
    }else if( db->file_format>4 ){
      sqliteBtreeCloseCursor(curMain);
      sqliteSetString(pzErrMsg, "unsupported file format", (char*)0);
      return SQLITE_ERROR;
    }
  }else if( iDb!=1 && (db->file_format!=meta[2] || db->file_format<4) ){
    assert( db->file_format>=4 );
    if( meta[2]==0 ){
      sqliteSetString(pzErrMsg, "cannot attach empty database: ",
         db->aDb[iDb].zName, (char*)0);
    }else{
      sqliteSetString(pzErrMsg, "incompatible file format in auxiliary "
         "database: ", db->aDb[iDb].zName, (char*)0);
    }
    sqliteBtreeClose(db->aDb[iDb].pBt);
    db->aDb[iDb].pBt = 0;
    return SQLITE_FORMAT;
  }
  sqliteBtreeSetCacheSize(db->aDb[iDb].pBt, db->cache_size);
  sqliteBtreeSetSafetyLevel(db->aDb[iDb].pBt, meta[4]==0 ? 2 : meta[4]);

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  sqliteSafetyOff(db);

  /* The following SQL will read the schema from the master tables.
  ** The first version works with SQLite file formats 2 or greater.
  ** The second version is for format 1 files.
  **
  ** Beginning with file format 2, the rowid for new table entries
  ** (including entries in sqlite_master) is an increasing integer.
  ** So for file format 2 and later, we can play back sqlite_master
  ** and all the CREATE statements will appear in the right order.
  ** But with file format 1, table entries were random and so we
  ** have to make sure the CREATE TABLEs occur before their corresponding
  ** CREATE INDEXs.  (We don't have to deal with CREATE VIEW or
  ** CREATE TRIGGER in file format 1 because those constructs did
  ** not exist then.) 
  */
  if( db->file_format>=2 ){
    sqliteSetString(&zSql, 
        "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
       db->aDb[iDb].zName, "\".", zMasterName, (char*)0);
  }else{
    sqliteSetString(&zSql, 
        "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
       db->aDb[iDb].zName, "\".", zMasterName, 
       " WHERE type IN ('table', 'index')"
       " ORDER BY CASE type WHEN 'table' THEN 0 ELSE 1 END", (char*)0);
  }
  rc = sqlite_exec(db, zSql, sqliteInitCallback, &initData, 0);

  sqliteFree(zSql);
  sqliteSafetyOn(db);
  sqliteBtreeCloseCursor(curMain);
  if( sqlite_malloc_failed ){
    sqliteSetString(pzErrMsg, "out of memory", (char*)0);
    rc = SQLITE_NOMEM;
    sqliteResetInternalSchema(db, 0);
  }
  if( rc==SQLITE_OK ){
    DbSetProperty(db, iDb, DB_SchemaLoaded);
  }else{
    sqliteResetInternalSchema(db, iDb);
  }
  return rc;
}
main.c179
INTsqliteInit(sqlite *db, char **pzErrMsg)
int sqliteInit(sqlite *db, char **pzErrMsg){
  int i, rc;
  
  if( db->init.busy ) return SQLITE_OK;
  assert( (db->flags & SQLITE_Initialized)==0 );
  rc = SQLITE_OK;
  db->init.busy = 1;
  for(i=0; rc==SQLITE_OK && inDb; i++){
    if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
    rc = sqliteInitOne(db, i, pzErrMsg);
    if( rc ){
      sqliteResetInternalSchema(db, i);
    }
  }

  /* Once all the other databases have been initialised, load the schema
  ** for the TEMP database. This is loaded last, as the TEMP database
  ** schema may contain references to objects in other databases.
  */
  if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
    rc = sqliteInitOne(db, 1, pzErrMsg);
    if( rc ){
      sqliteResetInternalSchema(db, 1);
    }
  }

  db->init.busy = 0;
  if( rc==SQLITE_OK ){
    db->flags |= SQLITE_Initialized;
    sqliteCommitInternalChanges(db);
  }

  /* If the database is in formats 1 or 2, then upgrade it to
  ** version 3.  This will reconstruct all indices.  If the
  ** upgrade fails for any reason (ex: out of disk space, database
  ** is read only, interrupt received, etc.) then fail the init.
  */
  if( rc==SQLITE_OK && db->file_format<3 ){
    char *zErr = 0;
    InitData initData;
    int meta[SQLITE_N_BTREE_META];

    db->magic = SQLITE_MAGIC_OPEN;
    initData.db = db;
    initData.pzErrMsg = &zErr;
    db->file_format = 3;
    rc = sqlite_exec(db,
      "BEGIN; SELECT name FROM sqlite_master WHERE type='table';",
      upgrade_3_callback,
      &initData,
      &zErr);
    if( rc==SQLITE_OK ){
      sqliteBtreeGetMeta(db->aDb[0].pBt, meta);
      meta[2] = 4;
      sqliteBtreeUpdateMeta(db->aDb[0].pBt, meta);
      sqlite_exec(db, "COMMIT", 0, 0, 0);
    }
    if( rc!=SQLITE_OK ){
      sqliteSetString(pzErrMsg, 
        "unable to upgrade database to the version 2.6 format",
        zErr ? ": " : 0, zErr, (char*)0);
    }
    sqlite_freemem(zErr);
  }

  if( rc!=SQLITE_OK ){
    db->flags &= ~SQLITE_Initialized;
  }
  return rc;
}

/*
** The version of the library
*/
const char rcsid[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $";
const char sqlite_version[] = SQLITE_VERSION;

/*
** Does the library expect data to be encoded as UTF-8 or iso8859?  The
** following global constant always lets us know.
*/
#ifdef SQLITE_UTF8
const char sqlite_encoding[] = "UTF-8";
#else
const char sqlite_encoding[] = "iso8859";
main.c366
SQLITE sqlite_open(const char *zFilename, int mode, char **pzErrMsg)
sqlite *sqlite_open(const char *zFilename, int mode, char **pzErrMsg){
  sqlite *db;
  int rc, i;

  /* Allocate the sqlite data structure */
  db = sqliteMalloc( sizeof(sqlite) );
  if( pzErrMsg ) *pzErrMsg = 0;
  if( db==0 ) goto no_mem_on_open;
  db->onError = OE_Default;
  db->priorNewRowid = 0;
  db->magic = SQLITE_MAGIC_BUSY;
  db->nDb = 2;
  db->aDb = db->aDbStatic;
  /* db->flags |= SQLITE_ShortColNames; */
  sqliteHashInit(&db->aFunc, SQLITE_HASH_STRING, 1);
  for(i=0; inDb; i++){
    sqliteHashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
    sqliteHashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
    sqliteHashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
    sqliteHashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
  }
  
  /* Open the backend database driver */
  if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
    db->temp_store = 2;
  }
  rc = sqliteBtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){
    switch( rc ){
      default: {
        sqliteSetString(pzErrMsg, "unable to open database: ",
           zFilename, (char*)0);
      }
    }
    sqliteFree(db);
    sqliteStrRealloc(pzErrMsg);
    return 0;
  }
  db->aDb[0].zName = "main";
  db->aDb[1].zName = "temp";

  /* Attempt to read the schema */
  sqliteRegisterBuiltinFunctions(db);
  rc = sqliteInit(db, pzErrMsg);
  db->magic = SQLITE_MAGIC_OPEN;
  if( sqlite_malloc_failed ){
    sqlite_close(db);
    goto no_mem_on_open;
  }else if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
    sqlite_close(db);
    sqliteStrRealloc(pzErrMsg);
    return 0;
  }else if( pzErrMsg ){
    sqliteFree(*pzErrMsg);
    *pzErrMsg = 0;
  }

  /* Return a pointer to the newly opened database structure */
  return db;

no_mem_on_open:
  sqliteSetString(pzErrMsg, "out of memory", (char*)0);
  sqliteStrRealloc(pzErrMsg);
  return 0;
}
main.c466
INTsqlite_last_insert_rowid(sqlite *db)
int sqlite_last_insert_rowid(sqlite *db){
  return db->lastRowid;
}
main.c541
INTsqlite_changes(sqlite *db)
int sqlite_changes(sqlite *db){
  return db->nChange;
}
main.c548
INTsqlite_last_statement_changes(sqlite *db)
int sqlite_last_statement_changes(sqlite *db){
  return db->lsChange;
}
main.c555
VOIDsqlite_close(sqlite *db)
void sqlite_close(sqlite *db){
  HashElem *i;
  int j;
  db->want_to_close = 1;
  if( sqliteSafetyCheck(db) || sqliteSafetyOn(db) ){
    /* printf("DID NOT CLOSE\n"); fflush(stdout); */
    return;
  }
  db->magic = SQLITE_MAGIC_CLOSED;
  for(j=0; jnDb; j++){
    struct Db *pDb = &db->aDb[j];
    if( pDb->pBt ){
      sqliteBtreeClose(pDb->pBt);
      pDb->pBt = 0;
    }
  }
  sqliteResetInternalSchema(db, 0);
  assert( db->nDb<=2 );
  assert( db->aDb==db->aDbStatic );
  for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
    FuncDef *pFunc, *pNext;
    for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
      pNext = pFunc->pNext;
      sqliteFree(pFunc);
    }
  }
  sqliteHashClear(&db->aFunc);
  sqliteFree(db);
}
main.c565
VOIDsqliteRollbackAll(sqlite *db)
void sqliteRollbackAll(sqlite *db){
  int i;
  for(i=0; inDb; i++){
    if( db->aDb[i].pBt ){
      sqliteBtreeRollback(db->aDb[i].pBt);
      db->aDb[i].inTrans = 0;
    }
  }
  sqliteResetInternalSchema(db, 0);
  /* sqliteRollbackInternalChanges(db); */
}
main.c598
INTsqlite_exec( sqlite *db, const char *zSql, sqlite_callback xCallback, void *pArg, char **pzErrMsg )
int sqlite_exec(
  sqlite *db,                 /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  sqlite_callback xCallback,  /* Invoke this callback routine */
  void *pArg,                 /* First argument to xCallback() */
  char **pzErrMsg             /* Write error messages here */
){
  int rc = SQLITE_OK;
  const char *zLeftover;
  sqlite_vm *pVm;
  int nRetry = 0;
  int nChange = 0;
  int nCallback;

  if( zSql==0 ) return SQLITE_OK;
  while( rc==SQLITE_OK && zSql[0] ){
    pVm = 0;
    rc = sqlite_compile(db, zSql, &zLeftover, &pVm, pzErrMsg);
    if( rc!=SQLITE_OK ){
      assert( pVm==0 || sqlite_malloc_failed );
      return rc;
    }
    if( pVm==0 ){
      /* This happens if the zSql input contained only whitespace */
      break;
    }
    db->nChange += nChange;
    nCallback = 0;
    while(1){
      int nArg;
      char **azArg, **azCol;
      rc = sqlite_step(pVm, &nArg, (const char***)&azArg,(const char***)&azCol);
      if( rc==SQLITE_ROW ){
        if( xCallback!=0 && xCallback(pArg, nArg, azArg, azCol) ){
          sqlite_finalize(pVm, 0);
          return SQLITE_ABORT;
        }
        nCallback++;
      }else{
        if( rc==SQLITE_DONE && nCallback==0
          && (db->flags & SQLITE_NullCallback)!=0 && xCallback!=0 ){
          xCallback(pArg, nArg, azArg, azCol);
        }
        rc = sqlite_finalize(pVm, pzErrMsg);
        if( rc==SQLITE_SCHEMA && nRetry<2 ){
          nRetry++;
          rc = SQLITE_OK;
          break;
        }
        if( db->pVdbe==0 ){
          nChange = db->nChange;
        }
        nRetry = 0;
        zSql = zLeftover;
        while( isspace(zSql[0]) ) zSql++;
        break;
      }
    }
  }
  return rc;
}
main.c613
INTsqlite_compile( sqlite *db, const char *zSql, const char **pzTail, sqlite_vm **ppVm, char **pzErrMsg )
int sqlite_compile(
  sqlite *db,                 /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  const char **pzTail,        /* OUT: Next statement after the first */
  sqlite_vm **ppVm,           /* OUT: The virtual machine */
  char **pzErrMsg             /* OUT: Write error messages here */
){
  Parse sParse;

  if( pzErrMsg ) *pzErrMsg = 0;
  if( sqliteSafetyOn(db) ) goto exec_misuse;
  if( !db->init.busy ){
    if( (db->flags & SQLITE_Initialized)==0 ){
      int rc, cnt = 1;
      while( (rc = sqliteInit(db, pzErrMsg))==SQLITE_BUSY
         && db->xBusyCallback
         && db->xBusyCallback(db->pBusyArg, "", cnt++)!=0 ){}
      if( rc!=SQLITE_OK ){
        sqliteStrRealloc(pzErrMsg);
        sqliteSafetyOff(db);
        return rc;
      }
      if( pzErrMsg ){
        sqliteFree(*pzErrMsg);
        *pzErrMsg = 0;
      }
    }
    if( db->file_format<3 ){
      sqliteSafetyOff(db);
      sqliteSetString(pzErrMsg, "obsolete database file format", (char*)0);
      return SQLITE_ERROR;
    }
  }
  assert( (db->flags & SQLITE_Initialized)!=0 || db->init.busy );
  if( db->pVdbe==0 ){ db->nChange = 0; }
  memset(&sParse, 0, sizeof(sParse));
  sParse.db = db;
  sqliteRunParser(&sParse, zSql, pzErrMsg);
  if( db->xTrace && !db->init.busy ){
    /* Trace only the statment that was compiled.
    ** Make a copy of that part of the SQL string since zSQL is const
    ** and we must pass a zero terminated string to the trace function
    ** The copy is unnecessary if the tail pointer is pointing at the
    ** beginnig or end of the SQL string.
    */
    if( sParse.zTail && sParse.zTail!=zSql && *sParse.zTail ){
      char *tmpSql = sqliteStrNDup(zSql, sParse.zTail - zSql);
      if( tmpSql ){
        db->xTrace(db->pTraceArg, tmpSql);
        free(tmpSql);
      }else{
        /* If a memory error occurred during the copy,
        ** trace entire SQL string and fall through to the
        ** sqlite_malloc_failed test to report the error.
        */
        db->xTrace(db->pTraceArg, zSql); 
      }
    }else{
      db->xTrace(db->pTraceArg, zSql); 
    }
  }
  if( sqlite_malloc_failed ){
    sqliteSetString(pzErrMsg, "out of memory", (char*)0);
    sParse.rc = SQLITE_NOMEM;
    sqliteRollbackAll(db);
    sqliteResetInternalSchema(db, 0);
    db->flags &= ~SQLITE_InTrans;
  }
  if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
  if( sParse.rc!=SQLITE_OK && pzErrMsg && *pzErrMsg==0 ){
    sqliteSetString(pzErrMsg, sqlite_error_string(sParse.rc), (char*)0);
  }
  sqliteStrRealloc(pzErrMsg);
  if( sParse.rc==SQLITE_SCHEMA ){
    sqliteResetInternalSchema(db, 0);
  }
  assert( ppVm );
  *ppVm = (sqlite_vm*)sParse.pVdbe;
  if( pzTail ) *pzTail = sParse.zTail;
  if( sqliteSafetyOff(db) ) goto exec_misuse;
  return sParse.rc;

exec_misuse:
  if( pzErrMsg ){
    *pzErrMsg = 0;
    sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
    sqliteStrRealloc(pzErrMsg);
  }
  return SQLITE_MISUSE;
}
main.c686
INTsqlite_finalize( sqlite_vm *pVm, char **pzErrMsg )
int sqlite_finalize(
  sqlite_vm *pVm,            /* The virtual machine to be destroyed */
  char **pzErrMsg            /* OUT: Write error messages here */
){
  int rc = sqliteVdbeFinalize((Vdbe*)pVm, pzErrMsg);
  sqliteStrRealloc(pzErrMsg);
  return rc;
}
main.c783
INTsqlite_reset( sqlite_vm *pVm, char **pzErrMsg )
int sqlite_reset(
  sqlite_vm *pVm,            /* The virtual machine to be destroyed */
  char **pzErrMsg            /* OUT: Write error messages here */
){
  int rc = sqliteVdbeReset((Vdbe*)pVm, pzErrMsg);
  sqliteVdbeMakeReady((Vdbe*)pVm, -1, 0);
  sqliteStrRealloc(pzErrMsg);
  return rc;
}
main.c803
CONST CHAR sqlite_error_string(int rc)
const char *sqlite_error_string(int rc){
  const char *z;
  switch( rc ){
    case SQLITE_OK:         z = "not an error";                          break;
    case SQLITE_ERROR:      z = "SQL logic error or missing database";   break;
    case SQLITE_INTERNAL:   z = "internal SQLite implementation flaw";   break;
    case SQLITE_PERM:       z = "access permission denied";              break;
    case SQLITE_ABORT:      z = "callback requested query abort";        break;
    case SQLITE_BUSY:       z = "database is locked";                    break;
    case SQLITE_LOCKED:     z = "database table is locked";              break;
    case SQLITE_NOMEM:      z = "out of memory";                         break;
    case SQLITE_READONLY:   z = "attempt to write a readonly database";  break;
    case SQLITE_INTERRUPT:  z = "interrupted";                           break;
    case SQLITE_IOERR:      z = "disk I/O error";                        break;
    case SQLITE_CORRUPT:    z = "database disk image is malformed";      break;
    case SQLITE_NOTFOUND:   z = "table or record not found";             break;
    case SQLITE_FULL:       z = "database is full";                      break;
    case SQLITE_CANTOPEN:   z = "unable to open database file";          break;
    case SQLITE_PROTOCOL:   z = "database locking protocol failure";     break;
    case SQLITE_EMPTY:      z = "table contains no data";                break;
    case SQLITE_SCHEMA:     z = "database schema has changed";           break;
    case SQLITE_TOOBIG:     z = "too much data for one table row";       break;
    case SQLITE_CONSTRAINT: z = "constraint failed";                     break;
    case SQLITE_MISMATCH:   z = "datatype mismatch";                     break;
    case SQLITE_MISUSE:     z = "library routine called out of sequence";break;
    case SQLITE_NOLFS:      z = "kernel lacks large file support";       break;
    case SQLITE_AUTH:       z = "authorization denied";                  break;
    case SQLITE_FORMAT:     z = "auxiliary database format error";       break;
    case SQLITE_RANGE:      z = "bind index out of range";               break;
    case SQLITE_NOTADB:     z = "file is encrypted or is not a database";break;
    default:                z = "unknown error";                         break;
  }
  return z;
}
main.c820
STATIC INTsqliteDefaultBusyCallback( void *Timeout, const char *NotUsed, int count )
static int sqliteDefaultBusyCallback(
 void *Timeout,           /* Maximum amount of time to wait */
 const char *NotUsed,     /* The name of the table that is busy */
 int count                /* Number of times table has been busy */
){
#if SQLITE_MIN_SLEEP_MS==1
  static const char delays[] =
     { 1, 2, 5, 10, 15, 20, 25, 25,  25,  50,  50,  50, 100};
  static const short int totals[] =
     { 0, 1, 3,  8, 18, 33, 53, 78, 103, 128, 178, 228, 287};
# define NDELAY (sizeof(delays)/sizeof(delays[0]))
  int timeout = (int)(long)Timeout;
  int delay, prior;

  if( count <= NDELAY ){
    delay = delays[count-1];
    prior = totals[count-1];
  }else{
    delay = delays[NDELAY-1];
    prior = totals[NDELAY-1] + delay*(count-NDELAY-1);
  }
  if( prior + delay > timeout ){
    delay = timeout - prior;
    if( delay<=0 ) return 0;
  }
  sqliteOsSleep(delay);
  return 1;
#else
  int timeout = (int)(long)Timeout;
  if( (count+1)*1000 > timeout ){
    return 0;
  }
  sqliteOsSleep(1000);
  return 1;
#endif
}
main.c859
VOID SQLITE_BUSY_HANDLER( SQLITE *DB, INT (*XBUSY(void*,const char*,int), void *pArg )
void sqlite_busy_handler(
  sqlite *db,
  int (*xBusy)(void*,const char*,int),
  void *pArg
){
  db->xBusyCallback = xBusy;
  db->pBusyArg = pArg;
}
main.c902
VOID SQLITE_PROGRESS_HANDLER( SQLITE *DB, INT NOPS, INT (*XPROGRESS(void*), void *pArg )
void sqlite_progress_handler(
  sqlite *db, 
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){
  if( nOps>0 ){
    db->xProgress = xProgress;
    db->nProgressOps = nOps;
    db->pProgressArg = pArg;
  }else{
    db->xProgress = 0;
    db->nProgressOps = 0;
    db->pProgressArg = 0;
  }
}
main.c916
VOIDsqlite_busy_timeout(sqlite *db, int ms)
void sqlite_busy_timeout(sqlite *db, int ms){
  if( ms>0 ){
    sqlite_busy_handler(db, sqliteDefaultBusyCallback, (void*)(long)ms);
  }else{
    sqlite_busy_handler(db, 0, 0);
  }
}
main.c940
VOIDsqlite_interrupt(sqlite *db)
void sqlite_interrupt(sqlite *db){
  db->flags |= SQLITE_Interrupt;
}

/*
** Windows systems should call this routine to free memory that
** is returned in the in the errmsg parameter of sqlite_open() when
** SQLite is a DLL.  For some reason, it does not work to call free()
** directly.
**
** Note that we need to call free() not sqliteFree() here, since every
** string that is exported from SQLite should have already passed through
** sqliteStrRealloc().
*/
void sqlite_freemem(void *p){ free(p); }

/*
** Windows systems need functions to call to return the sqlite_version
** and sqlite_encoding strings since they are unable to access constants
** within DLLs.
*/
const char *sqlite_libversion(void){ return sqlite_version; }
const char *sqlite_libencoding(void){ return sqlite_encoding; }
main.c952
} INT SQLITE_CREATE_FUNCTION( SQLITE *DB, CONST CHAR *ZNAME, INT NARG, VOID (*XFUNC(sqlite_func*,int,const char**), void *pUserData )
int sqlite_create_function(
  sqlite *db,          /* Add the function to this database connection */
  const char *zName,   /* Name of the function to add */
  int nArg,            /* Number of arguments */
  void (*xFunc)(sqlite_func*,int,const char**),  /* The implementation */
  void *pUserData      /* User data */
){
  FuncDef *p;
  int nName;
  if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
  if( nArg<-1 || nArg>127 ) return 1;
  nName = strlen(zName);
  if( nName>255 ) return 1;
  p = sqliteFindFunction(db, zName, nName, nArg, 1);
  if( p==0 ) return 1;
  p->xFunc = xFunc;
  p->xStep = 0;
  p->xFinalize = 0;
  p->pUserData = pUserData;
  return 0;
}
main.c979
INT SQLITE_CREATE_AGGREGATE( SQLITE *DB, CONST CHAR *ZNAME, INT NARG, VOID (*XSTEP)(SQLITE_FUNC*,INT,CONST CHAR**), VOID (*XFINALIZE(sqlite_func*), void *pUserData )
int sqlite_create_aggregate(
  sqlite *db,          /* Add the function to this database connection */
  const char *zName,   /* Name of the function to add */
  int nArg,            /* Number of arguments */
  void (*xStep)(sqlite_func*,int,const char**), /* The step function */
  void (*xFinalize)(sqlite_func*),              /* The finalizer */
  void *pUserData      /* User data */
){
  FuncDef *p;
  int nName;
  if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
  if( nArg<-1 || nArg>127 ) return 1;
  nName = strlen(zName);
  if( nName>255 ) return 1;
  p = sqliteFindFunction(db, zName, nName, nArg, 1);
  if( p==0 ) return 1;
  p->xFunc = 0;
  p->xStep = xStep;
  p->xFinalize = xFinalize;
  p->pUserData = pUserData;
  return 0;
}
main.c1014
INTsqlite_function_type(sqlite *db, const char *zName, int dataType)
int sqlite_function_type(sqlite *db, const char *zName, int dataType){
  FuncDef *p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, strlen(zName));
  while( p ){
    p->dataType = dataType; 
    p = p->pNext;
  }
  return SQLITE_OK;
}
main.c1037
VOID *SQLITE_TRACE(SQLITE *DB, VOID (*XTRACE(void*,const char*), void *pArg)
void *sqlite_trace(sqlite *db, void (*xTrace)(void*,const char*), void *pArg){
  void *pOld = db->pTraceArg;
  db->xTrace = xTrace;
  db->pTraceArg = pArg;
  return pOld;
}
main.c1051
VOID *SQLITE_COMMIT_HOOK( SQLITE *DB, INT (*XCALLBACK(void*), void *pArg )
void *sqlite_commit_hook(
  sqlite *db,               /* Attach the hook to this database */
  int (*xCallback)(void*),  /* Function to invoke on each commit */
  void *pArg                /* Argument to the function */
){
  void *pOld = db->pCommitArg;
  db->xCommitCallback = xCallback;
  db->pCommitArg = pArg;
  return pOld;
}
main.c1066
INTsqliteBtreeFactory( const sqlite *db, const char *zFilename, int omitJournal, int nCache, Btree **ppBtree)
int sqliteBtreeFactory(
  const sqlite *db,         /* Main database when opening aux otherwise 0 */
  const char *zFilename,    /* Name of the file containing the BTree database */
  int omitJournal,          /* if TRUE then do not journal this file */
  int nCache,               /* How many pages in the page cache */
  Btree **ppBtree){         /* Pointer to new Btree object written here */

  assert( ppBtree != 0);

#ifndef SQLITE_OMIT_INMEMORYDB
  if( zFilename==0 ){
    if (TEMP_STORE == 0) {
      /* Always use file based temporary DB */
      return sqliteBtreeOpen(0, omitJournal, nCache, ppBtree);
    } else if (TEMP_STORE == 1 || TEMP_STORE == 2) {
      /* Switch depending on compile-time and/or runtime settings. */
      int location = db->temp_store==0 ? TEMP_STORE : db->temp_store;

      if (location == 1) {
        return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
      } else {
        return sqliteRbtreeOpen(0, 0, 0, ppBtree);
      }
    } else {
      /* Always use in-core DB */
      return sqliteRbtreeOpen(0, 0, 0, ppBtree);
    }
  }else if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
    return sqliteRbtreeOpen(0, 0, 0, ppBtree);
  }else
#endif
  {
    return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
  }
}
main.c1084
os.c
TypeFunctionSourceLine
__INLINE__ UNSIGNED LONG LONG INThwtime(void)
__inline__ unsigned long long int hwtime(void){
  unsigned long long int x;
  __asm__("rdtsc\n\t"
          "mov %%edx, %%ecx\n\t"
          :"=A" (x));
  return x;
}
static unsigned long long int g_start;
static unsigned int elapse;
#define TIMER_START       g_start=hwtime()
#define TIMER_END         elapse=hwtime()-g_start
#define SEEK(X)           last_page=(X)
#define TRACE1(X)         fprintf(stderr,X)
#define TRACE2(X,Y)       fprintf(stderr,X,Y)
#define TRACE3(X,Y,Z)     fprintf(stderr,X,Y,Z)
#define TRACE4(X,Y,Z,A)   fprintf(stderr,X,Y,Z,A)
#define TRACE5(X,Y,Z,A,B) fprintf(stderr,X,Y,Z,A,B)
#else
#define TIMER_START
#define TIMER_END
#define SEEK(X)
#define TRACE1(X)
#define TRACE2(X,Y)
#define TRACE3(X,Y,Z)
#define TRACE4(X,Y,Z,A)
#define TRACE5(X,Y,Z,A,B)
#endif


#if OS_UNIX
/*
** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
** section 6.5.2.2 lines 483 through 490 specify that when a process
** sets or clears a lock, that operation overrides any prior locks set
** by the same process.  It does not explicitly say so, but this implies
** that it overrides locks set by the same process using a different
** file descriptor.  Consider this test case:
**
**       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
**       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
**
** Suppose ./file1 and ./file2 are really the same file (because
** one is a hard or symbolic link to the other) then if you set
** an exclusive lock on fd1, then try to get an exclusive lock
** on fd2, it works.  I would have expected the second lock to
** fail since there was already a lock on the file due to fd1.
** But not so.  Since both locks came from the same process, the
** second overrides the first, even though they were on different
** file descriptors opened on different file names.
**
** Bummer.  If you ask me, this is broken.  Badly broken.  It means
** that we cannot use POSIX locks to synchronize file access among
** competing threads of the same process.  POSIX locks will work fine
** to synchronize access for threads in separate processes, but not
** threads within the same process.
**
** To work around the problem, SQLite has to manage file locks internally
** on its own.  Whenever a new database is opened, we have to find the
** specific inode of the database file (the inode is determined by the
** st_dev and st_ino fields of the stat structure that fstat() fills in)
** and check for locks already existing on that inode.  When locks are
** created or removed, we have to look at our own internal record of the
** locks to see if another thread has previously set a lock on that same
** inode.
**
** The OsFile structure for POSIX is no longer just an integer file
** descriptor.  It is now a structure that holds the integer file
** descriptor and a pointer to a structure that describes the internal
** locks on the corresponding inode.  There is one locking structure
** per inode, so if the same inode is opened twice, both OsFile structures
** point to the same locking structure.  The locking structure keeps
** a reference count (so we will know when to delete it) and a "cnt"
** field that tells us its internal lock status.  cnt==0 means the
** file is unlocked.  cnt==-1 means the file has an exclusive lock.
** cnt>0 means there are cnt shared locks on the file.
**
** Any attempt to lock or unlock a file first checks the locking
** structure.  The fcntl() system call is only invoked to set a 
** POSIX lock if the internal lock structure transitions between
** a locked and an unlocked state.
**
** 2004-Jan-11:
** More recent discoveries about POSIX advisory locks.  (The more
** I discover, the more I realize the a POSIX advisory locks are
** an abomination.)
**
** If you close a file descriptor that points to a file that has locks,
** all locks on that file that are owned by the current process are
** released.  To work around this problem, each OsFile structure contains
** a pointer to an openCnt structure.  There is one openCnt structure
** per open inode, which means that multiple OsFiles can point to a single
** openCnt.  When an attempt is made to close an OsFile, if there are
** other OsFiles open on the same inode that are holding locks, the call
** to close() the file descriptor is deferred until all of the locks clear.
** The openCnt structure keeps a list of file descriptors that need to
** be closed and that list is walked (and cleared) when the last lock
** clears.
**
** First, under Linux threads, because each thread has a separate
** process ID, lock operations in one thread do not override locks
** to the same file in other threads.  Linux threads behave like
** separate processes in this respect.  But, if you close a file
** descriptor in linux threads, all locks are cleared, even locks
** on other threads and even though the other threads have different
** process IDs.  Linux threads is inconsistent in this respect.
** (I'm beginning to think that linux threads is an abomination too.)
** The consequence of this all is that the hash table for the lockInfo
** structure has to include the process id as part of its key because
** locks in different threads are treated as distinct.  But the 
** openCnt structure should not include the process id in its
** key because close() clears lock on all threads, not just the current
** thread.  Were it not for this goofiness in linux threads, we could
** combine the lockInfo and openCnt structures into a single structure.
*/

/*
** An instance of the following structure serves as the key used
** to locate a particular lockInfo structure given its inode.  Note
** that we have to include the process ID as part of the key.  On some
** threading implementations (ex: linux), each thread has a separate
** process ID.
*/
struct lockKey {
  dev_t dev;   /* Device number */
  ino_t ino;   /* Inode number */
  pid_t pid;   /* Process ID */
};

/*
** An instance of the following structure is allocated for each open
** inode on each thread with a different process ID.  (Threads have
** different process IDs on linux, but not on most other unixes.)
**
** A single inode can have multiple file descriptors, so each OsFile
** structure contains a pointer to an instance of this object and this
** object keeps a count of the number of OsFiles pointing to it.
*/
struct lockInfo {
  struct lockKey key;  /* The lookup key */
  int cnt;             /* 0: unlocked.  -1: write lock.  1...: read lock. */
  int nRef;            /* Number of pointers to this structure */
};

/*
** An instance of the following structure serves as the key used
** to locate a particular openCnt structure given its inode.  This
** is the same as the lockKey except that the process ID is omitted.
*/
struct openKey {
  dev_t dev;   /* Device number */
  ino_t ino;   /* Inode number */
};

/*
** An instance of the following structure is allocated for each open
** inode.  This structure keeps track of the number of locks on that
** inode.  If a close is attempted against an inode that is holding
** locks, the close is deferred until all locks clear by adding the
** file descriptor to be closed to the pending list.
*/
struct openCnt {
  struct openKey key;   /* The lookup key */
  int nRef;             /* Number of pointers to this structure */
  int nLock;            /* Number of outstanding locks */
  int nPending;         /* Number of pending close() operations */
  int *aPending;        /* Malloced space holding fd's awaiting a close() */
};

/* 
** These hash table maps inodes and process IDs into lockInfo and openCnt
** structures.  Access to these hash tables must be protected by a mutex.
*/
static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
os.c87
STATIC VOIDreleaseLockInfo(struct lockInfo *pLock)
static void releaseLockInfo(struct lockInfo *pLock){
  pLock->nRef--;
  if( pLock->nRef==0 ){
    sqliteHashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
    sqliteFree(pLock);
  }
}
os.c262
STATIC VOIDreleaseOpenCnt(struct openCnt *pOpen)
static void releaseOpenCnt(struct openCnt *pOpen){
  pOpen->nRef--;
  if( pOpen->nRef==0 ){
    sqliteHashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
    sqliteFree(pOpen->aPending);
    sqliteFree(pOpen);
  }
}
os.c273
INTfindLockInfo( int fd, struct lockInfo **ppLock, struct openCnt **ppOpen )
int findLockInfo(
  int fd,                      /* The file descriptor used in the key */
  struct lockInfo **ppLock,    /* Return the lockInfo structure here */
  struct openCnt **ppOpen   /* Return the openCnt structure here */
){
  int rc;
  struct lockKey key1;
  struct openKey key2;
  struct stat statbuf;
  struct lockInfo *pLock;
  struct openCnt *pOpen;
  rc = fstat(fd, &statbuf);
  if( rc!=0 ) return 1;
  memset(&key1, 0, sizeof(key1));
  key1.dev = statbuf.st_dev;
  key1.ino = statbuf.st_ino;
  key1.pid = getpid();
  memset(&key2, 0, sizeof(key2));
  key2.dev = statbuf.st_dev;
  key2.ino = statbuf.st_ino;
  pLock = (struct lockInfo*)sqliteHashFind(&lockHash, &key1, sizeof(key1));
  if( pLock==0 ){
    struct lockInfo *pOld;
    pLock = sqliteMallocRaw( sizeof(*pLock) );
    if( pLock==0 ) return 1;
    pLock->key = key1;
    pLock->nRef = 1;
    pLock->cnt = 0;
    pOld = sqliteHashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
    if( pOld!=0 ){
      assert( pOld==pLock );
      sqliteFree(pLock);
      return 1;
    }
  }else{
    pLock->nRef++;
  }
  *ppLock = pLock;
  pOpen = (struct openCnt*)sqliteHashFind(&openHash, &key2, sizeof(key2));
  if( pOpen==0 ){
    struct openCnt *pOld;
    pOpen = sqliteMallocRaw( sizeof(*pOpen) );
    if( pOpen==0 ){
      releaseLockInfo(pLock);
      return 1;
    }
    pOpen->key = key2;
    pOpen->nRef = 1;
    pOpen->nLock = 0;
    pOpen->nPending = 0;
    pOpen->aPending = 0;
    pOld = sqliteHashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
    if( pOld!=0 ){
      assert( pOld==pOpen );
      sqliteFree(pOpen);
      releaseLockInfo(pLock);
      return 1;
    }
  }else{
    pOpen->nRef++;
  }
  *ppOpen = pOpen;
  return 0;
}

#endif  /** POSIX advisory lock work-around **/

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
int sqlite_io_error_pending = 0;
#define SimulateIOError(A)  \
   if( sqlite_io_error_pending ) \
     if( sqlite_io_error_pending-- == 1 ){ local_ioerr(); return A; }
os.c285
} STATIC VOIDlocal_ioerr()
static void local_ioerr(){
  sqlite_io_error_pending = 0;  /* Really just a place to set a breakpoint */
}
#else
#define SimulateIOError(A)
#endif

/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
int sqlite_open_file_count = 0;
os.c369
INTsqliteOsDelete(const char *zFilename)
int sqliteOsDelete(const char *zFilename){
#if OS_UNIX
  unlink(zFilename);
#endif
#if OS_WIN
  DeleteFile(zFilename);
#endif
#if OS_MAC
  unlink(zFilename);
#endif
  return SQLITE_OK;
}
os.c387
INTsqliteOsFileExists(const char *zFilename)
int sqliteOsFileExists(const char *zFilename){
#if OS_UNIX
  return access(zFilename, 0)==0;
#endif
#if OS_WIN
  return GetFileAttributes(zFilename) != 0xffffffff;
#endif
#if OS_MAC
  return access(zFilename, 0)==0;
#endif
}
os.c403
INTsqliteOsFileRename(const char *zOldName, const char *zNewName)
int sqliteOsFileRename(const char *zOldName, const char *zNewName){
#if OS_UNIX
  if( link(zOldName, zNewName) ){
    return SQLITE_ERROR;
  }
  unlink(zOldName);
  return SQLITE_OK;
#endif
#if OS_WIN
  if( !MoveFile(zOldName, zNewName) ){
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
#endif
#if OS_MAC
  /**** FIX ME ***/
  return SQLITE_ERROR;
#endif
}
os.c420
INTsqliteOsOpenReadWrite( const char *zFilename, OsFile *id, int *pReadonly )
int sqliteOsOpenReadWrite(
  const char *zFilename,
  OsFile *id,
  int *pReadonly
){
#if OS_UNIX
  int rc;
  id->dirfd = -1;
  id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
  if( id->fd<0 ){
#ifdef EISDIR
    if( errno==EISDIR ){
      return SQLITE_CANTOPEN;
    }
#endif
    id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
    if( id->fd<0 ){
      return SQLITE_CANTOPEN; 
    }
    *pReadonly = 1;
  }else{
    *pReadonly = 0;
  }
  sqliteOsEnterMutex();
  rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
  sqliteOsLeaveMutex();
  if( rc ){
    close(id->fd);
    return SQLITE_NOMEM;
  }
  id->locked = 0;
  TRACE3("OPEN    %-3d %s\n", id->fd, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
#endif
#if OS_WIN
  HANDLE h = CreateFile(zFilename,
     GENERIC_READ | GENERIC_WRITE,
     FILE_SHARE_READ | FILE_SHARE_WRITE,
     NULL,
     OPEN_ALWAYS,
     FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
     NULL
  );
  if( h==INVALID_HANDLE_VALUE ){
    h = CreateFile(zFilename,
       GENERIC_READ,
       FILE_SHARE_READ,
       NULL,
       OPEN_ALWAYS,
       FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
       NULL
    );
    if( h==INVALID_HANDLE_VALUE ){
      return SQLITE_CANTOPEN;
    }
    *pReadonly = 1;
  }else{
    *pReadonly = 0;
  }
  id->h = h;
  id->locked = 0;
  OpenCounter(+1);
  return SQLITE_OK;
#endif
#if OS_MAC
  FSSpec fsSpec;
# ifdef _LARGE_FILE
  HFSUniStr255 dfName;
  FSRef fsRef;
  if( __path2fss(zFilename, &fsSpec) != noErr ){
    if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
      return SQLITE_CANTOPEN;
  }
  if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
    return SQLITE_CANTOPEN;
  FSGetDataForkName(&dfName);
  if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
                 fsRdWrShPerm, &(id->refNum)) != noErr ){
    if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
                   fsRdWrPerm, &(id->refNum)) != noErr ){
      if (FSOpenFork(&fsRef, dfName.length, dfName.unicode,
                   fsRdPerm, &(id->refNum)) != noErr )
        return SQLITE_CANTOPEN;
      else
        *pReadonly = 1;
    } else
      *pReadonly = 0;
  } else
    *pReadonly = 0;
# else
  __path2fss(zFilename, &fsSpec);
  if( !sqliteOsFileExists(zFilename) ){
    if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
      return SQLITE_CANTOPEN;
  }
  if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){
    if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){
      if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
        return SQLITE_CANTOPEN;
      else
        *pReadonly = 1;
    } else
      *pReadonly = 0;
  } else
    *pReadonly = 0;
# endif
  if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
    id->refNumRF = -1;
  }
  id->locked = 0;
  id->delOnClose = 0;
  OpenCounter(+1);
  return SQLITE_OK;
#endif
}
os.c444
INTsqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag)
int sqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
#if OS_UNIX
  int rc;
  if( access(zFilename, 0)==0 ){
    return SQLITE_CANTOPEN;
  }
  id->dirfd = -1;
  id->fd = open(zFilename,
                O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
  if( id->fd<0 ){
    return SQLITE_CANTOPEN;
  }
  sqliteOsEnterMutex();
  rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
  sqliteOsLeaveMutex();
  if( rc ){
    close(id->fd);
    unlink(zFilename);
    return SQLITE_NOMEM;
  }
  id->locked = 0;
  if( delFlag ){
    unlink(zFilename);
  }
  TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
#endif
#if OS_WIN
  HANDLE h;
  int fileflags;
  if( delFlag ){
    fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS 
                     | FILE_FLAG_DELETE_ON_CLOSE;
  }else{
    fileflags = FILE_FLAG_RANDOM_ACCESS;
  }
  h = CreateFile(zFilename,
     GENERIC_READ | GENERIC_WRITE,
     0,
     NULL,
     CREATE_ALWAYS,
     fileflags,
     NULL
  );
  if( h==INVALID_HANDLE_VALUE ){
    return SQLITE_CANTOPEN;
  }
  id->h = h;
  id->locked = 0;
  OpenCounter(+1);
  return SQLITE_OK;
#endif
#if OS_MAC
  FSSpec fsSpec;
# ifdef _LARGE_FILE
  HFSUniStr255 dfName;
  FSRef fsRef;
  __path2fss(zFilename, &fsSpec);
  if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
    return SQLITE_CANTOPEN;
  if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
    return SQLITE_CANTOPEN;
  FSGetDataForkName(&dfName);
  if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
                 fsRdWrPerm, &(id->refNum)) != noErr )
    return SQLITE_CANTOPEN;
# else
  __path2fss(zFilename, &fsSpec);
  if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
    return SQLITE_CANTOPEN;
  if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr )
    return SQLITE_CANTOPEN;
# endif
  id->refNumRF = -1;
  id->locked = 0;
  id->delOnClose = delFlag;
  if (delFlag)
    id->pathToDel = sqliteOsFullPathname(zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
#endif
}
os.c575
INTsqliteOsOpenReadOnly(const char *zFilename, OsFile *id)
int sqliteOsOpenReadOnly(const char *zFilename, OsFile *id){
#if OS_UNIX
  int rc;
  id->dirfd = -1;
  id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
  if( id->fd<0 ){
    return SQLITE_CANTOPEN;
  }
  sqliteOsEnterMutex();
  rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
  sqliteOsLeaveMutex();
  if( rc ){
    close(id->fd);
    return SQLITE_NOMEM;
  }
  id->locked = 0;
  TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
#endif
#if OS_WIN
  HANDLE h = CreateFile(zFilename,
     GENERIC_READ,
     0,
     NULL,
     OPEN_EXISTING,
     FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
     NULL
  );
  if( h==INVALID_HANDLE_VALUE ){
    return SQLITE_CANTOPEN;
  }
  id->h = h;
  id->locked = 0;
  OpenCounter(+1);
  return SQLITE_OK;
#endif
#if OS_MAC
  FSSpec fsSpec;
# ifdef _LARGE_FILE
  HFSUniStr255 dfName;
  FSRef fsRef;
  if( __path2fss(zFilename, &fsSpec) != noErr )
    return SQLITE_CANTOPEN;
  if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
    return SQLITE_CANTOPEN;
  FSGetDataForkName(&dfName);
  if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
                 fsRdPerm, &(id->refNum)) != noErr )
    return SQLITE_CANTOPEN;
# else
  __path2fss(zFilename, &fsSpec);
  if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
    return SQLITE_CANTOPEN;
# endif
  if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
    id->refNumRF = -1;
  }
  id->locked = 0;
  id->delOnClose = 0;
  OpenCounter(+1);
  return SQLITE_OK;
#endif
}
os.c673
INTsqliteOsOpenDirectory( const char *zDirname, OsFile *id )
int sqliteOsOpenDirectory(
  const char *zDirname,
  OsFile *id
){
#if OS_UNIX
  if( id->fd<0 ){
    /* Do not open the directory if the corresponding file is not already
    ** open. */
    return SQLITE_CANTOPEN;
  }
  assert( id->dirfd<0 );
  id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
  if( id->dirfd<0 ){
    return SQLITE_CANTOPEN; 
  }
  TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
#endif
  return SQLITE_OK;
}

/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
*/
const char *sqlite_temp_directory = 0;
os.c745
INTsqliteOsTempFileName(char *zBuf)
int sqliteOsTempFileName(char *zBuf){
#if OS_UNIX
  static const char *azDirs[] = {
     0,
     "/var/tmp",
     "/usr/tmp",
     "/tmp",
     ".",
  };
  static unsigned char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    "0123456789";
  int i, j;
  struct stat buf;
  const char *zDir = ".";
  azDirs[0] = sqlite_temp_directory;
  for(i=0; i0 && zTempPath[i-1]=='\\'; i--){}
    zTempPath[i] = 0;
    zDir = zTempPath;
  }else{
    zDir = sqlite_temp_directory;
  }
  for(;;){
    sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zDir);
    j = strlen(zBuf);
    sqliteRandomness(15, &zBuf[j]);
    for(i=0; i<15; i++, j++){
      zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
    }
    zBuf[j] = 0;
    if( !sqliteOsFileExists(zBuf) ) break;
  }
#endif
#if OS_MAC
  static char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    "0123456789";
  int i, j;
  char *zDir;
  char zTempPath[SQLITE_TEMPNAME_SIZE];
  char zdirName[32];
  CInfoPBRec infoRec;
  Str31 dirName;
  memset(&infoRec, 0, sizeof(infoRec));
  memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE);
  if( sqlite_temp_directory!=0 ){
    zDir = sqlite_temp_directory;
  }else if( FindFolder(kOnSystemDisk, kTemporaryFolderType,  kCreateFolder,
       &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){
    infoRec.dirInfo.ioNamePtr = dirName;
    do{
      infoRec.dirInfo.ioFDirIndex = -1;
      infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID;
      if( PBGetCatInfoSync(&infoRec) == noErr ){
        CopyPascalStringToC(dirName, zdirName);
        i = strlen(zdirName);
        memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath));
        strcpy(zTempPath, zdirName);
        zTempPath[i] = ':';
      }else{
        *zTempPath = 0;
        break;
      }
    } while( infoRec.dirInfo.ioDrDirID != fsRtDirID );
    zDir = zTempPath;
  }
  if( zDir[0]==0 ){
    getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24);
    zDir = zTempPath;
  }
  for(;;){
    sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zDir);
    j = strlen(zBuf);
    sqliteRandomness(15, &zBuf[j]);
    for(i=0; i<15; i++, j++){
      zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
    }
    zBuf[j] = 0;
    if( !sqliteOsFileExists(zBuf) ) break;
  }
#endif
  return SQLITE_OK; 
}
os.c788
INTsqliteOsClose(OsFile *id)
int sqliteOsClose(OsFile *id){
#if OS_UNIX
  sqliteOsUnlock(id);
  if( id->dirfd>=0 ) close(id->dirfd);
  id->dirfd = -1;
  sqliteOsEnterMutex();
  if( id->pOpen->nLock ){
    /* If there are outstanding locks, do not actually close the file just
    ** yet because that would clear those locks.  Instead, add the file
    ** descriptor to pOpen->aPending.  It will be automatically closed when
    ** the last lock is cleared.
    */
    int *aNew;
    struct openCnt *pOpen = id->pOpen;
    pOpen->nPending++;
    aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
    if( aNew==0 ){
      /* If a malloc fails, just leak the file descriptor */
    }else{
      pOpen->aPending = aNew;
      pOpen->aPending[pOpen->nPending-1] = id->fd;
    }
  }else{
    /* There are no outstanding locks so we can close the file immediately */
    close(id->fd);
  }
  releaseLockInfo(id->pLock);
  releaseOpenCnt(id->pOpen);
  sqliteOsLeaveMutex();
  TRACE2("CLOSE   %-3d\n", id->fd);
  OpenCounter(-1);
  return SQLITE_OK;
#endif
#if OS_WIN
  CloseHandle(id->h);
  OpenCounter(-1);
  return SQLITE_OK;
#endif
#if OS_MAC
  if( id->refNumRF!=-1 )
    FSClose(id->refNumRF);
# ifdef _LARGE_FILE
  FSCloseFork(id->refNum);
# else
  FSClose(id->refNum);
# endif
  if( id->delOnClose ){
    unlink(id->pathToDel);
    sqliteFree(id->pathToDel);
  }
  OpenCounter(-1);
  return SQLITE_OK;
#endif
}
os.c906
INTsqliteOsRead(OsFile *id, void *pBuf, int amt)
int sqliteOsRead(OsFile *id, void *pBuf, int amt){
#if OS_UNIX
  int got;
  SimulateIOError(SQLITE_IOERR);
  TIMER_START;
  got = read(id->fd, pBuf, amt);
  TIMER_END;
  TRACE4("READ    %-3d %7d %d\n", id->fd, last_page, elapse);
  SEEK(0);
  /* if( got<0 ) got = 0; */
  if( got==amt ){
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR;
  }
#endif
#if OS_WIN
  DWORD got;
  SimulateIOError(SQLITE_IOERR);
  TRACE2("READ %d\n", last_page);
  if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
    got = 0;
  }
  if( got==(DWORD)amt ){
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR;
  }
#endif
#if OS_MAC
  int got;
  SimulateIOError(SQLITE_IOERR);
  TRACE2("READ %d\n", last_page);
# ifdef _LARGE_FILE
  FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got);
# else
  got = amt;
  FSRead(id->refNum, &got, pBuf);
# endif
  if( got==amt ){
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR;
  }
#endif
}
os.c964
INTsqliteOsWrite(OsFile *id, const void *pBuf, int amt)
int sqliteOsWrite(OsFile *id, const void *pBuf, int amt){
#if OS_UNIX
  int wrote = 0;
  SimulateIOError(SQLITE_IOERR);
  TIMER_START;
  while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
    amt -= wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  TIMER_END;
  TRACE4("WRITE   %-3d %7d %d\n", id->fd, last_page, elapse);
  SEEK(0);
  if( amt>0 ){
    return SQLITE_FULL;
  }
  return SQLITE_OK;
#endif
#if OS_WIN
  int rc;
  DWORD wrote;
  SimulateIOError(SQLITE_IOERR);
  TRACE2("WRITE %d\n", last_page);
  while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
    amt -= wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  if( !rc || amt>(int)wrote ){
    return SQLITE_FULL;
  }
  return SQLITE_OK;
#endif
#if OS_MAC
  OSErr oserr;
  int wrote = 0;
  SimulateIOError(SQLITE_IOERR);
  TRACE2("WRITE %d\n", last_page);
  while( amt>0 ){
# ifdef _LARGE_FILE
    oserr = FSWriteFork(id->refNum, fsAtMark, 0,
                        (ByteCount)amt, pBuf, (ByteCount*)&wrote);
# else
    wrote = amt;
    oserr = FSWrite(id->refNum, &wrote, pBuf);
# endif
    if( wrote == 0 || oserr != noErr)
      break;
    amt -= wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  if( oserr != noErr || amt>wrote ){
    return SQLITE_FULL;
  }
  return SQLITE_OK;
#endif
}
os.c1016
INTsqliteOsSeek(OsFile *id, off_t offset)
int sqliteOsSeek(OsFile *id, off_t offset){
  SEEK(offset/1024 + 1);
#if OS_UNIX
  lseek(id->fd, offset, SEEK_SET);
  return SQLITE_OK;
#endif
#if OS_WIN
  {
    LONG upperBits = offset>>32;
    LONG lowerBits = offset & 0xffffffff;
    DWORD rc;
    rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
    /* TRACE3("SEEK rc=0x%x upper=0x%x\n", rc, upperBits); */
  }
  return SQLITE_OK;
#endif
#if OS_MAC
  {
    off_t curSize;
    if( sqliteOsFileSize(id, &curSize) != SQLITE_OK ){
      return SQLITE_IOERR;
    }
    if( offset >= curSize ){
      if( sqliteOsTruncate(id, offset+1) != SQLITE_OK ){
        return SQLITE_IOERR;
      }
    }
# ifdef _LARGE_FILE
    if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){
# else
    if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){
# endif
      return SQLITE_IOERR;
    }else{
      return SQLITE_OK;
    }
  }
#endif
}

#ifdef SQLITE_NOSYNC
# define fsync(X) 0
#endif

/*
** Make sure all writes to a particular file are committed to disk.
**
** Under Unix, also make sure that the directory entry for the file
** has been created by fsync-ing the directory that contains the file.
** If we do not do this and we encounter a power failure, the directory
** entry for the journal might not exist after we reboot.  The next
** SQLite to access the file will not know that the journal exists (because
** the directory entry for the journal was never created) and the transaction
** will not roll back - possibly leading to database corruption.
*/
int sqliteOsSync(OsFile *id){
#if OS_UNIX
  SimulateIOError(SQLITE_IOERR);
  TRACE2("SYNC    %-3d\n", id->fd);
  if( fsync(id->fd) ){
    return SQLITE_IOERR;
  }else{
    if( id->dirfd>=0 ){
      TRACE2("DIRSYNC %-3d\n", id->dirfd);
      fsync(id->dirfd);
      close(id->dirfd);  /* Only need to sync once, so close the directory */
      id->dirfd = -1;    /* when we are done. */
    }
    return SQLITE_OK;
  }
#endif
#if OS_WIN
  if( FlushFileBuffers(id->h) ){
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR;
  }
#endif
#if OS_MAC
# ifdef _LARGE_FILE
  if( FSFlushFork(id->refNum) != noErr ){
# else
  ParamBlockRec params;
  memset(¶ms, 0, sizeof(ParamBlockRec));
  params.ioParam.ioRefNum = id->refNum;
  if( PBFlushFileSync(¶ms) != noErr ){
# endif
    return SQLITE_IOERR;
  }else{
    return SQLITE_OK;
  }
#endif
}

/*
** Truncate an open file to a specified size
*/
int sqliteOsTruncate(OsFile *id, off_t nByte){
  SimulateIOError(SQLITE_IOERR);
#if OS_UNIX
  return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
#endif
#if OS_WIN
  {
    LONG upperBits = nByte>>32;
    SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
    SetEndOfFile(id->h);
  }
  return SQLITE_OK;
#endif
#if OS_MAC
# ifdef _LARGE_FILE
  if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){
# else
  if( SetEOF(id->refNum, nByte) != noErr ){
# endif
    return SQLITE_IOERR;
  }else{
    return SQLITE_OK;
  }
#endif
}

/*
** Determine the current size of a file in bytes
*/
int sqliteOsFileSize(OsFile *id, off_t *pSize){
#if OS_UNIX
  struct stat buf;
  SimulateIOError(SQLITE_IOERR);
  if( fstat(id->fd, &buf)!=0 ){
    return SQLITE_IOERR;
  }
  *pSize = buf.st_size;
  return SQLITE_OK;
#endif
#if OS_WIN
  DWORD upperBits, lowerBits;
  SimulateIOError(SQLITE_IOERR);
  lowerBits = GetFileSize(id->h, &upperBits);
  *pSize = (((off_t)upperBits)<<32) + lowerBits;
  return SQLITE_OK;
#endif
#if OS_MAC
# ifdef _LARGE_FILE
  if( FSGetForkSize(id->refNum, pSize) != noErr){
# else
  if( GetEOF(id->refNum, pSize) != noErr ){
# endif
    return SQLITE_IOERR;
  }else{
    return SQLITE_OK;
  }
#endif
}

#if OS_WIN
/*
** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
** Return false (zero) for Win95, Win98, or WinME.
**
** Here is an interesting observation:  Win95, Win98, and WinME lack
** the LockFileEx() API.  But we can still statically link against that
** API as long as we don't call it win running Win95/98/ME.  A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
int isNT(void){
  static int osType = 0;   /* 0=unknown 1=win95 2=winNT */
  if( osType==0 ){
    OSVERSIONINFO sInfo;
    sInfo.dwOSVersionInfoSize = sizeof(sInfo);
    GetVersionEx(&sInfo);
    osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
  }
  return osType==2;
}
#endif

/*
** Windows file locking notes:  [similar issues apply to MacOS]
**
** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
** those functions are not available.  So we use only LockFile() and
** UnlockFile().
**
** LockFile() prevents not just writing but also reading by other processes.
** (This is a design error on the part of Windows, but there is nothing
** we can do about that.)  So the region used for locking is at the
** end of the file where it is unlikely to ever interfere with an
** actual read attempt.
**
** A database read lock is obtained by locking a single randomly-chosen 
** byte out of a specific range of bytes. The lock byte is obtained at 
** random so two separate readers can probably access the file at the 
** same time, unless they are unlucky and choose the same lock byte.
** A database write lock is obtained by locking all bytes in the range.
** There can only be one writer.
**
** A lock is obtained on the first byte of the lock range before acquiring
** either a read lock or a write lock.  This prevents two processes from
** attempting to get a lock at a same time.  The semantics of 
** sqliteOsReadLock() require that if there is already a write lock, that
** lock is converted into a read lock atomically.  The lock on the first
** byte allows us to drop the old write lock and get the read lock without
** another process jumping into the middle and messing us up.  The same
** argument applies to sqliteOsWriteLock().
**
** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
** which means we can use reader/writer locks.  When reader writer locks
** are used, the lock is placed on the same range of bytes that is used
** for probabilistic locking in Win95/98/ME.  Hence, the locking scheme
** will support two or more Win95 readers or two or more WinNT readers.
** But a single Win95 reader will lock out all WinNT readers and a single
** WinNT reader will lock out all other Win95 readers.
**
** Note: On MacOS we use the resource fork for locking.
**
** The following #defines specify the range of bytes used for locking.
** N_LOCKBYTE is the number of bytes available for doing the locking.
** The first byte used to hold the lock while the lock is changing does
** not count toward this number.  FIRST_LOCKBYTE is the address of
** the first byte in the range of bytes used for locking.
*/
#define N_LOCKBYTE       10239
#if OS_MAC
# define FIRST_LOCKBYTE   (0x000fffff - N_LOCKBYTE)
#else
# define FIRST_LOCKBYTE   (0xffffffff - N_LOCKBYTE)
#endif

/*
** Change the status of the lock on the file "id" to be a readlock.
** If the file was write locked, then this reduces the lock to a read.
** If the file was read locked, then this acquires a new read lock.
**
** Return SQLITE_OK on success and SQLITE_BUSY on failure.  If this
** library was compiled with large file support (LFS) but LFS is not
** available on the host, then an SQLITE_NOLFS is returned.
*/
int sqliteOsReadLock(OsFile *id){
#if OS_UNIX
  int rc;
  sqliteOsEnterMutex();
  if( id->pLock->cnt>0 ){
    if( !id->locked ){
      id->pLock->cnt++;
      id->locked = 1;
      id->pOpen->nLock++;
    }
    rc = SQLITE_OK;
  }else if( id->locked || id->pLock->cnt==0 ){
    struct flock lock;
    int s;
    lock.l_type = F_RDLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = lock.l_len = 0L;
    s = fcntl(id->fd, F_SETLK, &lock);
    if( s!=0 ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }else{
      rc = SQLITE_OK;
      if( !id->locked ){
        id->pOpen->nLock++;
        id->locked = 1;
      }
      id->pLock->cnt = 1;
    }
  }else{
    rc = SQLITE_BUSY;
  }
  sqliteOsLeaveMutex();
  return rc;
#endif
#if OS_WIN
  int rc;
  if( id->locked>0 ){
    rc = SQLITE_OK;
  }else{
    int lk;
    int res;
    int cnt = 100;
    sqliteRandomness(sizeof(lk), &lk);
    lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
    while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
      Sleep(1);
    }
    if( res ){
      UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
      if( isNT() ){
        OVERLAPPED ovlp;
        ovlp.Offset = FIRST_LOCKBYTE+1;
        ovlp.OffsetHigh = 0;
        ovlp.hEvent = 0;
        res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY, 
                          0, N_LOCKBYTE, 0, &ovlp);
      }else{
        res = LockFile(id->h, FIRST_LOCKBYTE+lk, 0, 1, 0);
      }
      UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
    }
    if( res ){
      id->locked = lk;
      rc = SQLITE_OK;
    }else{
      rc = SQLITE_BUSY;
    }
  }
  return rc;
#endif
#if OS_MAC
  int rc;
  if( id->locked>0 || id->refNumRF == -1 ){
    rc = SQLITE_OK;
  }else{
    int lk;
    OSErr res;
    int cnt = 5;
    ParamBlockRec params;
    sqliteRandomness(sizeof(lk), &lk);
    lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
    memset(¶ms, 0, sizeof(params));
    params.ioParam.ioRefNum = id->refNumRF;
    params.ioParam.ioPosMode = fsFromStart;
    params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
    params.ioParam.ioReqCount = 1;
    while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
      UInt32 finalTicks;
      Delay(1, &finalTicks); /* 1/60 sec */
    }
    if( res == noErr ){
      params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
      params.ioParam.ioReqCount = N_LOCKBYTE;
      PBUnlockRangeSync(¶ms);
      params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk;
      params.ioParam.ioReqCount = 1;
      res = PBLockRangeSync(¶ms);
      params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
      params.ioParam.ioReqCount = 1;
      PBUnlockRangeSync(¶ms);
    }
    if( res == noErr ){
      id->locked = lk;
      rc = SQLITE_OK;
    }else{
      rc = SQLITE_BUSY;
    }
  }
  return rc;
#endif
}

/*
** Change the lock status to be an exclusive or write lock.  Return
** SQLITE_OK on success and SQLITE_BUSY on a failure.  If this
** library was compiled with large file support (LFS) but LFS is not
** available on the host, then an SQLITE_NOLFS is returned.
*/
int sqliteOsWriteLock(OsFile *id){
#if OS_UNIX
  int rc;
  sqliteOsEnterMutex();
  if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
    struct flock lock;
    int s;
    lock.l_type = F_WRLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = lock.l_len = 0L;
    s = fcntl(id->fd, F_SETLK, &lock);
    if( s!=0 ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }else{
      rc = SQLITE_OK;
      if( !id->locked ){
        id->pOpen->nLock++;
        id->locked = 1;
      }
      id->pLock->cnt = -1;
    }
  }else{
    rc = SQLITE_BUSY;
  }
  sqliteOsLeaveMutex();
  return rc;
#endif
#if OS_WIN
  int rc;
  if( id->locked<0 ){
    rc = SQLITE_OK;
  }else{
    int res;
    int cnt = 100;
    while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
      Sleep(1);
    }
    if( res ){
      if( id->locked>0 ){
        if( isNT() ){
          UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
        }else{
          res = UnlockFile(id->h, FIRST_LOCKBYTE + id->locked, 0, 1, 0);
        }
      }
      if( res ){
        res = LockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
      }else{
        res = 0;
      }
      UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
    }
    if( res ){
      id->locked = -1;
      rc = SQLITE_OK;
    }else{
      rc = SQLITE_BUSY;
    }
  }
  return rc;
#endif
#if OS_MAC
  int rc;
  if( id->locked<0 || id->refNumRF == -1 ){
    rc = SQLITE_OK;
  }else{
    OSErr res;
    int cnt = 5;
    ParamBlockRec params;
    memset(¶ms, 0, sizeof(params));
    params.ioParam.ioRefNum = id->refNumRF;
    params.ioParam.ioPosMode = fsFromStart;
    params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
    params.ioParam.ioReqCount = 1;
    while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
      UInt32 finalTicks;
      Delay(1, &finalTicks); /* 1/60 sec */
    }
    if( res == noErr ){
      params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked;
      params.ioParam.ioReqCount = 1;
      if( id->locked==0 
            || PBUnlockRangeSync(¶ms)==noErr ){
        params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
        params.ioParam.ioReqCount = N_LOCKBYTE;
        res = PBLockRangeSync(¶ms);
      }else{
        res = afpRangeNotLocked;
      }
      params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
      params.ioParam.ioReqCount = 1;
      PBUnlockRangeSync(¶ms);
    }
    if( res == noErr ){
      id->locked = -1;
      rc = SQLITE_OK;
    }else{
      rc = SQLITE_BUSY;
    }
  }
  return rc;
#endif
}

/*
** Unlock the given file descriptor.  If the file descriptor was
** not previously locked, then this routine is a no-op.  If this
** library was compiled with large file support (LFS) but LFS is not
** available on the host, then an SQLITE_NOLFS is returned.
*/
int sqliteOsUnlock(OsFile *id){
#if OS_UNIX
  int rc;
  if( !id->locked ) return SQLITE_OK;
  sqliteOsEnterMutex();
  assert( id->pLock->cnt!=0 );
  if( id->pLock->cnt>1 ){
    id->pLock->cnt--;
    rc = SQLITE_OK;
  }else{
    struct flock lock;
    int s;
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = lock.l_len = 0L;
    s = fcntl(id->fd, F_SETLK, &lock);
    if( s!=0 ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }else{
      rc = SQLITE_OK;
      id->pLock->cnt = 0;
    }
  }
  if( rc==SQLITE_OK ){
    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    struct openCnt *pOpen = id->pOpen;
    pOpen->nLock--;
    assert( pOpen->nLock>=0 );
    if( pOpen->nLock==0 && pOpen->nPending>0 ){
      int i;
      for(i=0; inPending; i++){
        close(pOpen->aPending[i]);
      }
      sqliteFree(pOpen->aPending);
      pOpen->nPending = 0;
      pOpen->aPending = 0;
    }
  }
  sqliteOsLeaveMutex();
  id->locked = 0;
  return rc;
#endif
#if OS_WIN
  int rc;
  if( id->locked==0 ){
    rc = SQLITE_OK;
  }else if( isNT() || id->locked<0 ){
    UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
    rc = SQLITE_OK;
    id->locked = 0;
  }else{
    UnlockFile(id->h, FIRST_LOCKBYTE+id->locked, 0, 1, 0);
    rc = SQLITE_OK;
    id->locked = 0;
  }
  return rc;
#endif
#if OS_MAC
  int rc;
  ParamBlockRec params;
  memset(¶ms, 0, sizeof(params));
  params.ioParam.ioRefNum = id->refNumRF;
  params.ioParam.ioPosMode = fsFromStart;
  if( id->locked==0 || id->refNumRF == -1 ){
    rc = SQLITE_OK;
  }else if( id->locked<0 ){
    params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
    params.ioParam.ioReqCount = N_LOCKBYTE;
    PBUnlockRangeSync(¶ms);
    rc = SQLITE_OK;
    id->locked = 0;
  }else{
    params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked;
    params.ioParam.ioReqCount = 1;
    PBUnlockRangeSync(¶ms);
    rc = SQLITE_OK;
    id->locked = 0;
  }
  return rc;
#endif
}

/*
** Get information to seed the random number generator.  The seed
** is written into the buffer zBuf[256].  The calling function must
** supply a sufficiently large buffer.
*/
int sqliteOsRandomSeed(char *zBuf){
  /* We have to initialize zBuf to prevent valgrind from reporting
  ** errors.  The reports issued by valgrind are incorrect - we would
  ** prefer that the randomness be increased by making use of the
  ** uninitialized space in zBuf - but valgrind errors tend to worry
  ** some users.  Rather than argue, it seems easier just to initialize
  ** the whole array and silence valgrind, even if that means less randomness
  ** in the random seed.
  **
  ** When testing, initializing zBuf[] to zero is all we do.  That means
  ** that we always use the same random number sequence.* This makes the
  ** tests repeatable.
  */
  memset(zBuf, 0, 256);
#if OS_UNIX && !defined(SQLITE_TEST)
  {
    int pid;
    time((time_t*)zBuf);
    pid = getpid();
    memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
  }
#endif
#if OS_WIN && !defined(SQLITE_TEST)
  GetSystemTime((LPSYSTEMTIME)zBuf);
#endif
#if OS_MAC
  {
    int pid;
    Microseconds((UnsignedWide*)zBuf);
    pid = getpid();
    memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid));
  }
#endif
  return SQLITE_OK;
}

/*
** Sleep for a little while.  Return the amount of time slept.
*/
int sqliteOsSleep(int ms){
#if OS_UNIX
#if defined(HAVE_USLEEP) && HAVE_USLEEP
  usleep(ms*1000);
  return ms;
#else
  sleep((ms+999)/1000);
  return 1000*((ms+999)/1000);
#endif
#endif
#if OS_WIN
  Sleep(ms);
  return ms;
#endif
#if OS_MAC
  UInt32 finalTicks;
  UInt32 ticks = (((UInt32)ms+16)*3)/50;  /* 1/60 sec per tick */
  Delay(ticks, &finalTicks);
  return (int)((ticks*50)/3);
#endif
}

/*
** Static variables used for thread synchronization
*/
static int inMutex = 0;
#ifdef SQLITE_UNIX_THREADS
  static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
#endif
#ifdef SQLITE_W32_THREADS
  static CRITICAL_SECTION cs;
#endif
#ifdef SQLITE_MACOS_MULTITASKING
  static MPCriticalRegionID criticalRegion;
#endif

/*
** The following pair of routine implement mutual exclusion for
** multi-threaded processes.  Only a single thread is allowed to
** executed code that is surrounded by EnterMutex() and LeaveMutex().
**
** SQLite uses only a single Mutex.  There is not much critical
** code and what little there is executes quickly and without blocking.
*/
void sqliteOsEnterMutex(){
#ifdef SQLITE_UNIX_THREADS
  pthread_mutex_lock(&mutex);
#endif
#ifdef SQLITE_W32_THREADS
  static int isInit = 0;
  while( !isInit ){
    static long lock = 0;
    if( InterlockedIncrement(&lock)==1 ){
      InitializeCriticalSection(&cs);
      isInit = 1;
    }else{
      Sleep(1);
    }
  }
  EnterCriticalSection(&cs);
#endif
#ifdef SQLITE_MACOS_MULTITASKING
  static volatile int notInit = 1;
  if( notInit ){
    if( notInit == 2 ) /* as close as you can get to thread safe init */
      MPYield();
    else{
      notInit = 2;
      MPCreateCriticalRegion(&criticalRegion);
      notInit = 0;
    }
  }
  MPEnterCriticalRegion(criticalRegion, kDurationForever);
#endif
  assert( !inMutex );
  inMutex = 1;
}
void sqliteOsLeaveMutex(){
  assert( inMutex );
  inMutex = 0;
#ifdef SQLITE_UNIX_THREADS
  pthread_mutex_unlock(&mutex);
#endif
#ifdef SQLITE_W32_THREADS
  LeaveCriticalSection(&cs);
#endif
#ifdef SQLITE_MACOS_MULTITASKING
  MPExitCriticalRegion(criticalRegion);
#endif
}

/*
** Turn a relative pathname into a full pathname.  Return a pointer
** to the full pathname stored in space obtained from sqliteMalloc().
** The calling function is responsible for freeing this space once it
** is no longer needed.
*/
char *sqliteOsFullPathname(const char *zRelative){
#if OS_UNIX
  char *zFull = 0;
  if( zRelative[0]=='/' ){
    sqliteSetString(&zFull, zRelative, (char*)0);
  }else{
    char zBuf[5000];
    sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
                    (char*)0);
  }
  return zFull;
#endif
#if OS_WIN
  char *zNotUsed;
  char *zFull;
  int nByte;
  nByte = GetFullPathName(zRelative, 0, 0, &zNotUsed) + 1;
  zFull = sqliteMalloc( nByte );
  if( zFull==0 ) return 0;
  GetFullPathName(zRelative, nByte, zFull, &zNotUsed);
  return zFull;
#endif
#if OS_MAC
  char *zFull = 0;
  if( zRelative[0]==':' ){
    char zBuf[_MAX_PATH+1];
    sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]),
                    (char*)0);
  }else{
    if( strchr(zRelative, ':') ){
      sqliteSetString(&zFull, zRelative, (char*)0);
    }else{
    char zBuf[_MAX_PATH+1];
      sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, (char*)0);
    }
  }
  return zFull;
#endif
}

/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqliteOsCurrentTime().  This is used for testing.
*/
#ifdef SQLITE_TEST
int sqlite_current_time = 0;
#endif

/*
** Find the current time (in Universal Coordinated Time).  Write the
** current time and date as a Julian Day number into *prNow and
** return 0.  Return 1 if the time and date cannot be found.
*/
int sqliteOsCurrentTime(double *prNow){
#if OS_UNIX
  time_t t;
  time(&t);
  *prNow = t/86400.0 + 2440587.5;
#endif
#if OS_WIN
  FILETIME ft;
  /* FILETIME structure is a 64-bit value representing the number of 
     100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). 
  */
  double now;
  GetSystemTimeAsFileTime( &ft );
  now = ((double)ft.dwHighDateTime) * 4294967296.0; 
  *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
#endif
#ifdef SQLITE_TEST
  if( sqlite_current_time ){
    *prNow = sqlite_current_time/86400.0 + 2440587.5;
  }
#endif
  return 0;
}
os.c1076
pager.c
TypeFunctionSourceLine
STATIC VOIDpager_refinfo(PgHdr *p)
  static void pager_refinfo(PgHdr *p){
    static int cnt = 0;
    if( !pager_refinfo_enable ) return;
    printf(
       "REFCNT: %4d addr=0x%08x nRef=%d\n",
       p->pgno, (int)PGHDR_TO_DATA(p), p->nRef
    );
    cnt++;   /* Something to set a breakpoint on */
  }
pager.c292
STATIC INTread32bits(int format, OsFile *fd, u32 *pRes)
static int read32bits(int format, OsFile *fd, u32 *pRes){
  u32 res;
  int rc;
  rc = sqliteOsRead(fd, &res, sizeof(res));
  if( rc==SQLITE_OK && format>JOURNAL_FORMAT_1 ){
    unsigned char ac[4];
    memcpy(ac, &res, 4);
    res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
  }
  *pRes = res;
  return rc;
}
pager.c306
STATIC INTwrite32bits(OsFile *fd, u32 val)
static int write32bits(OsFile *fd, u32 val){
  unsigned char ac[4];
  if( journal_format<=1 ){
    return sqliteOsWrite(fd, &val, 4);
  }
  ac[0] = (val>>24) & 0xff;
  ac[1] = (val>>16) & 0xff;
  ac[2] = (val>>8) & 0xff;
  ac[3] = val & 0xff;
  return sqliteOsWrite(fd, ac, 4);
}
pager.c328
STATIC VOIDstore32bits(u32 val, PgHdr *p, int offset)
static void store32bits(u32 val, PgHdr *p, int offset){
  unsigned char *ac;
  ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
  if( journal_format<=1 ){
    memcpy(ac, &val, 4);
  }else{
    ac[0] = (val>>24) & 0xff;
    ac[1] = (val>>16) & 0xff;
    ac[2] = (val>>8) & 0xff;
    ac[3] = val & 0xff;
  }
}
pager.c349
STATIC INTpager_errcode(Pager *pPager)
static int pager_errcode(Pager *pPager){
  int rc = SQLITE_OK;
  if( pPager->errMask & PAGER_ERR_LOCK )    rc = SQLITE_PROTOCOL;
  if( pPager->errMask & PAGER_ERR_DISK )    rc = SQLITE_IOERR;
  if( pPager->errMask & PAGER_ERR_FULL )    rc = SQLITE_FULL;
  if( pPager->errMask & PAGER_ERR_MEM )     rc = SQLITE_NOMEM;
  if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
  return rc;
}
pager.c370
STATIC VOIDpage_add_to_ckpt_list(PgHdr *pPg)
static void page_add_to_ckpt_list(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  if( pPg->inCkpt ) return;
  assert( pPg->pPrevCkpt==0 && pPg->pNextCkpt==0 );
  pPg->pPrevCkpt = 0;
  if( pPager->pCkpt ){
    pPager->pCkpt->pPrevCkpt = pPg;
  }
  pPg->pNextCkpt = pPager->pCkpt;
  pPager->pCkpt = pPg;
  pPg->inCkpt = 1;
}
pager.c384
STATIC VOIDpage_remove_from_ckpt_list(PgHdr *pPg)
static void page_remove_from_ckpt_list(PgHdr *pPg){
  if( !pPg->inCkpt ) return;
  if( pPg->pPrevCkpt ){
    assert( pPg->pPrevCkpt->pNextCkpt==pPg );
    pPg->pPrevCkpt->pNextCkpt = pPg->pNextCkpt;
  }else{
    assert( pPg->pPager->pCkpt==pPg );
    pPg->pPager->pCkpt = pPg->pNextCkpt;
  }
  if( pPg->pNextCkpt ){
    assert( pPg->pNextCkpt->pPrevCkpt==pPg );
    pPg->pNextCkpt->pPrevCkpt = pPg->pPrevCkpt;
  }
  pPg->pNextCkpt = 0;
  pPg->pPrevCkpt = 0;
  pPg->inCkpt = 0;
}
pager.c405
STATIC PGHDR pager_lookup(Pager *pPager, Pgno pgno)
static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
  PgHdr *p = pPager->aHash[pager_hash(pgno)];
  while( p && p->pgno!=pgno ){
    p = p->pNextHash;
  }
  return p;
}
pager.c423
STATIC VOIDpager_reset(Pager *pPager)
static void pager_reset(Pager *pPager){
  PgHdr *pPg, *pNext;
  for(pPg=pPager->pAll; pPg; pPg=pNext){
    pNext = pPg->pNextAll;
    sqliteFree(pPg);
  }
  pPager->pFirst = 0;
  pPager->pFirstSynced = 0;
  pPager->pLast = 0;
  pPager->pAll = 0;
  memset(pPager->aHash, 0, sizeof(pPager->aHash));
  pPager->nPage = 0;
  if( pPager->state>=SQLITE_WRITELOCK ){
    sqlitepager_rollback(pPager);
  }
  sqliteOsUnlock(&pPager->fd);
  pPager->state = SQLITE_UNLOCK;
  pPager->dbSize = -1;
  pPager->nRef = 0;
  assert( pPager->journalOpen==0 );
}
pager.c435
STATIC INTpager_unwritelock(Pager *pPager)
static int pager_unwritelock(Pager *pPager){
  int rc;
  PgHdr *pPg;
  if( pPager->stateckptOpen ){
    sqliteOsClose(&pPager->cpfd);
    pPager->ckptOpen = 0;
  }
  if( pPager->journalOpen ){
    sqliteOsClose(&pPager->jfd);
    pPager->journalOpen = 0;
    sqliteOsDelete(pPager->zJournal);
    sqliteFree( pPager->aInJournal );
    pPager->aInJournal = 0;
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      pPg->inJournal = 0;
      pPg->dirty = 0;
      pPg->needSync = 0;
    }
  }else{
    assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
  }
  rc = sqliteOsReadLock(&pPager->fd);
  if( rc==SQLITE_OK ){
    pPager->state = SQLITE_READLOCK;
  }else{
    /* This can only happen if a process does a BEGIN, then forks and the
    ** child process does the COMMIT.  Because of the semantics of unix
    ** file locking, the unlock will fail.
    */
    pPager->state = SQLITE_UNLOCK;
  }
  return rc;
}
pager.c463
STATIC U32pager_cksum(Pager *pPager, Pgno pgno, const char *aData)
static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
  u32 cksum = pPager->cksumInit + pgno;
  return cksum;
}
pager.c509
STATIC INTpager_playback_one_page(Pager *pPager, OsFile *jfd, int format)
static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int format){
  int rc;
  PgHdr *pPg;              /* An existing page in the cache */
  PageRecord pgRec;
  u32 cksum;

  rc = read32bits(format, jfd, &pgRec.pgno);
  if( rc!=SQLITE_OK ) return rc;
  rc = sqliteOsRead(jfd, &pgRec.aData, sizeof(pgRec.aData));
  if( rc!=SQLITE_OK ) return rc;

  /* Sanity checking on the page.  This is more important that I originally
  ** thought.  If a power failure occurs while the journal is being written,
  ** it could cause invalid data to be written into the journal.  We need to
  ** detect this invalid data (with high probability) and ignore it.
  */
  if( pgRec.pgno==0 ){
    return SQLITE_DONE;
  }
  if( pgRec.pgno>(unsigned)pPager->dbSize ){
    return SQLITE_OK;
  }
  if( format>=JOURNAL_FORMAT_3 ){
    rc = read32bits(format, jfd, &cksum);
    if( rc ) return rc;
    if( pager_cksum(pPager, pgRec.pgno, pgRec.aData)!=cksum ){
      return SQLITE_DONE;
    }
  }

  /* Playback the page.  Update the in-memory copy of the page
  ** at the same time, if there is one.
  */
  pPg = pager_lookup(pPager, pgRec.pgno);
  TRACE2("PLAYBACK %d\n", pgRec.pgno);
  sqliteOsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
  rc = sqliteOsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
  if( pPg ){
    /* No page should ever be rolled back that is in use, except for page
    ** 1 which is held in use in order to keep the lock on the database
    ** active.
    */
    assert( pPg->nRef==0 || pPg->pgno==1 );
    memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE);
    memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
    pPg->dirty = 0;
    pPg->needSync = 0;
    CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
  }
  return rc;
}
pager.c521
STATIC INTpager_playback(Pager *pPager, int useJournalSize)
static int pager_playback(Pager *pPager, int useJournalSize){
  off_t szJ;               /* Size of the journal file in bytes */
  int nRec;                /* Number of Records in the journal */
  int i;                   /* Loop counter */
  Pgno mxPg = 0;           /* Size of the original file in pages */
  int format;              /* Format of the journal file. */
  unsigned char aMagic[sizeof(aJournalMagic1)];
  int rc;

  /* Figure out how many records are in the journal.  Abort early if
  ** the journal is empty.
  */
  assert( pPager->journalOpen );
  sqliteOsSeek(&pPager->jfd, 0);
  rc = sqliteOsFileSize(&pPager->jfd, &szJ);
  if( rc!=SQLITE_OK ){
    goto end_playback;
  }

  /* If the journal file is too small to contain a complete header,
  ** it must mean that the process that created the journal was just
  ** beginning to write the journal file when it died.  In that case,
  ** the database file should have still been completely unchanged.
  ** Nothing needs to be rolled back.  We can safely ignore this journal.
  */
  if( szJ < sizeof(aMagic)+sizeof(Pgno) ){
    goto end_playback;
  }

  /* Read the beginning of the journal and truncate the
  ** database file back to its original size.
  */
  rc = sqliteOsRead(&pPager->jfd, aMagic, sizeof(aMagic));
  if( rc!=SQLITE_OK ){
    rc = SQLITE_PROTOCOL;
    goto end_playback;
  }
  if( memcmp(aMagic, aJournalMagic3, sizeof(aMagic))==0 ){
    format = JOURNAL_FORMAT_3;
  }else if( memcmp(aMagic, aJournalMagic2, sizeof(aMagic))==0 ){
    format = JOURNAL_FORMAT_2;
  }else if( memcmp(aMagic, aJournalMagic1, sizeof(aMagic))==0 ){
    format = JOURNAL_FORMAT_1;
  }else{
    rc = SQLITE_PROTOCOL;
    goto end_playback;
  }
  if( format>=JOURNAL_FORMAT_3 ){
    if( szJ < sizeof(aMagic) + 3*sizeof(u32) ){
      /* Ignore the journal if it is too small to contain a complete
      ** header.  We already did this test once above, but at the prior
      ** test, we did not know the journal format and so we had to assume
      ** the smallest possible header.  Now we know the header is bigger
      ** than the minimum so we test again.
      */
      goto end_playback;
    }
    rc = read32bits(format, &pPager->jfd, (u32*)&nRec);
    if( rc ) goto end_playback;
    rc = read32bits(format, &pPager->jfd, &pPager->cksumInit);
    if( rc ) goto end_playback;
    if( nRec==0xffffffff || useJournalSize ){
      nRec = (szJ - JOURNAL_HDR_SZ(3))/JOURNAL_PG_SZ(3);
    }
  }else{
    nRec = (szJ - JOURNAL_HDR_SZ(2))/JOURNAL_PG_SZ(2);
    assert( nRec*JOURNAL_PG_SZ(2)+JOURNAL_HDR_SZ(2)==szJ );
  }
  rc = read32bits(format, &pPager->jfd, &mxPg);
  if( rc!=SQLITE_OK ){
    goto end_playback;
  }
  assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
  rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)mxPg);
  if( rc!=SQLITE_OK ){
    goto end_playback;
  }
  pPager->dbSize = mxPg;
  
  /* Copy original pages out of the journal and back into the database file.
  */
  for(i=0; ijfd, format);
    if( rc!=SQLITE_OK ){
      if( rc==SQLITE_DONE ){
        rc = SQLITE_OK;
      }
      break;
    }
  }

  /* Pages that have been written to the journal but never synced
  ** where not restored by the loop above.  We have to restore those
  ** pages by reading them back from the original database.
  */
  if( rc==SQLITE_OK ){
    PgHdr *pPg;
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      char zBuf[SQLITE_PAGE_SIZE];
      if( !pPg->dirty ) continue;
      if( (int)pPg->pgno <= pPager->origDbSize ){
        sqliteOsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
        rc = sqliteOsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
        TRACE2("REFETCH %d\n", pPg->pgno);
        CODEC(pPager, zBuf, pPg->pgno, 2);
        if( rc ) break;
      }else{
        memset(zBuf, 0, SQLITE_PAGE_SIZE);
      }
      if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
        memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
        memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
      }
      pPg->needSync = 0;
      pPg->dirty = 0;
    }
  }

end_playback:
  if( rc!=SQLITE_OK ){
    pager_unwritelock(pPager);
    pPager->errMask |= PAGER_ERR_CORRUPT;
    rc = SQLITE_CORRUPT;
  }else{
    rc = pager_unwritelock(pPager);
  }
  return rc;
}
pager.c580
STATIC INTpager_ckpt_playback(Pager *pPager)
static int pager_ckpt_playback(Pager *pPager){
  off_t szJ;               /* Size of the full journal */
  int nRec;                /* Number of Records */
  int i;                   /* Loop counter */
  int rc;

  /* Truncate the database back to its original size.
  */
  rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)pPager->ckptSize);
  pPager->dbSize = pPager->ckptSize;

  /* Figure out how many records are in the checkpoint journal.
  */
  assert( pPager->ckptInUse && pPager->journalOpen );
  sqliteOsSeek(&pPager->cpfd, 0);
  nRec = pPager->ckptNRec;
  
  /* Copy original pages out of the checkpoint journal and back into the
  ** database file.  Note that the checkpoint journal always uses format
  ** 2 instead of format 3 since it does not need to be concerned with
  ** power failures corrupting the journal and can thus omit the checksums.
  */
  for(i=nRec-1; i>=0; i--){
    rc = pager_playback_one_page(pPager, &pPager->cpfd, 2);
    assert( rc!=SQLITE_DONE );
    if( rc!=SQLITE_OK ) goto end_ckpt_playback;
  }

  /* Figure out how many pages need to be copied out of the transaction
  ** journal.
  */
  rc = sqliteOsSeek(&pPager->jfd, pPager->ckptJSize);
  if( rc!=SQLITE_OK ){
    goto end_ckpt_playback;
  }
  rc = sqliteOsFileSize(&pPager->jfd, &szJ);
  if( rc!=SQLITE_OK ){
    goto end_ckpt_playback;
  }
  nRec = (szJ - pPager->ckptJSize)/JOURNAL_PG_SZ(journal_format);
  for(i=nRec-1; i>=0; i--){
    rc = pager_playback_one_page(pPager, &pPager->jfd, journal_format);
    if( rc!=SQLITE_OK ){
      assert( rc!=SQLITE_DONE );
      goto end_ckpt_playback;
    }
  }
  
end_ckpt_playback:
  if( rc!=SQLITE_OK ){
    pPager->errMask |= PAGER_ERR_CORRUPT;
    rc = SQLITE_CORRUPT;
  }
  return rc;
}
pager.c761
VOIDsqlitepager_set_cachesize(Pager *pPager, int mxPage)
void sqlitepager_set_cachesize(Pager *pPager, int mxPage){
  if( mxPage>=0 ){
    pPager->noSync = pPager->tempFile;
    if( pPager->noSync==0 ) pPager->needSync = 0;
  }else{
    pPager->noSync = 1;
    mxPage = -mxPage;
  }
  if( mxPage>10 ){
    pPager->mxPage = mxPage;
  }
}
pager.c831
VOIDsqlitepager_set_safety_level(Pager *pPager, int level)
void sqlitepager_set_safety_level(Pager *pPager, int level){
  pPager->noSync =  level==1 || pPager->tempFile;
  pPager->fullSync = level==3 && !pPager->tempFile;
  if( pPager->noSync==0 ) pPager->needSync = 0;
}
pager.c854
STATIC INTsqlitepager_opentemp(char *zFile, OsFile *fd)
static int sqlitepager_opentemp(char *zFile, OsFile *fd){
  int cnt = 8;
  int rc;
  do{
    cnt--;
    sqliteOsTempFileName(zFile);
    rc = sqliteOsOpenExclusive(zFile, fd, 1);
  }while( cnt>0 && rc!=SQLITE_OK );
  return rc;
}
pager.c886
INTsqlitepager_open( Pager **ppPager, const char *zFilename, int mxPage, int nExtra, int useJournal )
int sqlitepager_open(
  Pager **ppPager,         /* Return the Pager structure here */
  const char *zFilename,   /* Name of the database file to open */
  int mxPage,              /* Max number of in-memory cache pages */
  int nExtra,              /* Extra bytes append to each in-memory page */
  int useJournal           /* TRUE to use a rollback journal on this file */
){
  Pager *pPager;
  char *zFullPathname;
  int nameLen;
  OsFile fd;
  int rc, i;
  int tempFile;
  int readOnly = 0;
  char zTemp[SQLITE_TEMPNAME_SIZE];

  *ppPager = 0;
  if( sqlite_malloc_failed ){
    return SQLITE_NOMEM;
  }
  if( zFilename && zFilename[0] ){
    zFullPathname = sqliteOsFullPathname(zFilename);
    rc = sqliteOsOpenReadWrite(zFullPathname, &fd, &readOnly);
    tempFile = 0;
  }else{
    rc = sqlitepager_opentemp(zTemp, &fd);
    zFilename = zTemp;
    zFullPathname = sqliteOsFullPathname(zFilename);
    tempFile = 1;
  }
  if( sqlite_malloc_failed ){
    return SQLITE_NOMEM;
  }
  if( rc!=SQLITE_OK ){
    sqliteFree(zFullPathname);
    return SQLITE_CANTOPEN;
  }
  nameLen = strlen(zFullPathname);
  pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
  if( pPager==0 ){
    sqliteOsClose(&fd);
    sqliteFree(zFullPathname);
    return SQLITE_NOMEM;
  }
  SET_PAGER(pPager);
  pPager->zFilename = (char*)&pPager[1];
  pPager->zDirectory = &pPager->zFilename[nameLen+1];
  pPager->zJournal = &pPager->zDirectory[nameLen+1];
  strcpy(pPager->zFilename, zFullPathname);
  strcpy(pPager->zDirectory, zFullPathname);
  for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
  if( i>0 ) pPager->zDirectory[i-1] = 0;
  strcpy(pPager->zJournal, zFullPathname);
  sqliteFree(zFullPathname);
  strcpy(&pPager->zJournal[nameLen], "-journal");
  pPager->fd = fd;
  pPager->journalOpen = 0;
  pPager->useJournal = useJournal;
  pPager->ckptOpen = 0;
  pPager->ckptInUse = 0;
  pPager->nRef = 0;
  pPager->dbSize = -1;
  pPager->ckptSize = 0;
  pPager->ckptJSize = 0;
  pPager->nPage = 0;
  pPager->mxPage = mxPage>5 ? mxPage : 10;
  pPager->state = SQLITE_UNLOCK;
  pPager->errMask = 0;
  pPager->tempFile = tempFile;
  pPager->readOnly = readOnly;
  pPager->needSync = 0;
  pPager->noSync = pPager->tempFile || !useJournal;
  pPager->pFirst = 0;
  pPager->pFirstSynced = 0;
  pPager->pLast = 0;
  pPager->nExtra = nExtra;
  memset(pPager->aHash, 0, sizeof(pPager->aHash));
  *ppPager = pPager;
  return SQLITE_OK;
}
pager.c906
VOID SQLITEPAGER_SET_DESTRUCTOR(PAGER *PPAGER, VOID (*XDESC(void*))
void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
  pPager->xDestructor = xDesc;
}
pager.c997
INTsqlitepager_pagecount(Pager *pPager)
int sqlitepager_pagecount(Pager *pPager){
  off_t n;
  assert( pPager!=0 );
  if( pPager->dbSize>=0 ){
    return pPager->dbSize;
  }
  if( sqliteOsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
    pPager->errMask |= PAGER_ERR_DISK;
    return 0;
  }
  n /= SQLITE_PAGE_SIZE;
  if( pPager->state!=SQLITE_UNLOCK ){
    pPager->dbSize = n;
  }
  return n;
}

/*
** Forward declaration
*/
static int syncJournal(Pager*);
pager.c1009
INTsqlitepager_truncate(Pager *pPager, Pgno nPage)
int sqlitepager_truncate(Pager *pPager, Pgno nPage){
  int rc;
  if( pPager->dbSize<0 ){
    sqlitepager_pagecount(pPager);
  }
  if( pPager->errMask!=0 ){
    rc = pager_errcode(pPager);
    return rc;
  }
  if( nPage>=(unsigned)pPager->dbSize ){
    return SQLITE_OK;
  }
  syncJournal(pPager);
  rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)nPage);
  if( rc==SQLITE_OK ){
    pPager->dbSize = nPage;
  }
  return rc;
}
pager.c1035
INTsqlitepager_close(Pager *pPager)
int sqlitepager_close(Pager *pPager){
  PgHdr *pPg, *pNext;
  switch( pPager->state ){
    case SQLITE_WRITELOCK: {
      sqlitepager_rollback(pPager);
      sqliteOsUnlock(&pPager->fd);
      assert( pPager->journalOpen==0 );
      break;
    }
    case SQLITE_READLOCK: {
      sqliteOsUnlock(&pPager->fd);
      break;
    }
    default: {
      /* Do nothing */
      break;
    }
  }
  for(pPg=pPager->pAll; pPg; pPg=pNext){
    pNext = pPg->pNextAll;
    sqliteFree(pPg);
  }
  sqliteOsClose(&pPager->fd);
  assert( pPager->journalOpen==0 );
  /* Temp files are automatically deleted by the OS
  ** if( pPager->tempFile ){
  **   sqliteOsDelete(pPager->zFilename);
  ** }
  */
  CLR_PAGER(pPager);
  if( pPager->zFilename!=(char*)&pPager[1] ){
    assert( 0 );  /* Cannot happen */
    sqliteFree(pPager->zFilename);
    sqliteFree(pPager->zJournal);
    sqliteFree(pPager->zDirectory);
  }
  sqliteFree(pPager);
  return SQLITE_OK;
}
pager.c1058
PGNOsqlitepager_pagenumber(void *pData)
Pgno sqlitepager_pagenumber(void *pData){
  PgHdr *p = DATA_TO_PGHDR(pData);
  return p->pgno;
}

pager.c1107
STATIC VOID_page_ref(PgHdr *pPg)
static void _page_ref(PgHdr *pPg){
  if( pPg->nRef==0 ){
    /* The page is currently on the freelist.  Remove it. */
    if( pPg==pPg->pPager->pFirstSynced ){
      PgHdr *p = pPg->pNextFree;
      while( p && p->needSync ){ p = p->pNextFree; }
      pPg->pPager->pFirstSynced = p;
    }
    if( pPg->pPrevFree ){
      pPg->pPrevFree->pNextFree = pPg->pNextFree;
    }else{
      pPg->pPager->pFirst = pPg->pNextFree;
    }
    if( pPg->pNextFree ){
      pPg->pNextFree->pPrevFree = pPg->pPrevFree;
    }else{
      pPg->pPager->pLast = pPg->pPrevFree;
    }
    pPg->pPager->nRef++;
  }
  pPg->nRef++;
  REFINFO(pPg);
}
pager.c1121
INTsqlitepager_ref(void *pData)
int sqlitepager_ref(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  page_ref(pPg);
  return SQLITE_OK;
}
pager.c1145
STATIC INTsyncJournal(Pager *pPager)
static int syncJournal(Pager *pPager){
  PgHdr *pPg;
  int rc = SQLITE_OK;

  /* Sync the journal before modifying the main database
  ** (assuming there is a journal and it needs to be synced.)
  */
  if( pPager->needSync ){
    if( !pPager->tempFile ){
      assert( pPager->journalOpen );
      /* assert( !pPager->noSync ); // noSync might be set if synchronous
      ** was turned off after the transaction was started.  Ticket #615 */
#ifndef NDEBUG
      {
        /* Make sure the pPager->nRec counter we are keeping agrees
        ** with the nRec computed from the size of the journal file.
        */
        off_t hdrSz, pgSz, jSz;
        hdrSz = JOURNAL_HDR_SZ(journal_format);
        pgSz = JOURNAL_PG_SZ(journal_format);
        rc = sqliteOsFileSize(&pPager->jfd, &jSz);
        if( rc!=0 ) return rc;
        assert( pPager->nRec*pgSz+hdrSz==jSz );
      }
#endif
      if( journal_format>=3 ){
        /* Write the nRec value into the journal file header */
        off_t szJ;
        if( pPager->fullSync ){
          TRACE1("SYNC\n");
          rc = sqliteOsSync(&pPager->jfd);
          if( rc!=0 ) return rc;
        }
        sqliteOsSeek(&pPager->jfd, sizeof(aJournalMagic1));
        rc = write32bits(&pPager->jfd, pPager->nRec);
        if( rc ) return rc;
        szJ = JOURNAL_HDR_SZ(journal_format) +
                 pPager->nRec*JOURNAL_PG_SZ(journal_format);
        sqliteOsSeek(&pPager->jfd, szJ);
      }
      TRACE1("SYNC\n");
      rc = sqliteOsSync(&pPager->jfd);
      if( rc!=0 ) return rc;
      pPager->journalStarted = 1;
    }
    pPager->needSync = 0;

    /* Erase the needSync flag from every page.
    */
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      pPg->needSync = 0;
    }
    pPager->pFirstSynced = pPager->pFirst;
  }

#ifndef NDEBUG
  /* If the Pager.needSync flag is clear then the PgHdr.needSync
  ** flag must also be clear for all pages.  Verify that this
  ** invariant is true.
  */
  else{
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      assert( pPg->needSync==0 );
    }
    assert( pPager->pFirstSynced==pPager->pFirst );
  }
#endif

  return rc;
}
pager.c1155
STATIC INTpager_write_pagelist(PgHdr *pList)
static int pager_write_pagelist(PgHdr *pList){
  Pager *pPager;
  int rc;

  if( pList==0 ) return SQLITE_OK;
  pPager = pList->pPager;
  while( pList ){
    assert( pList->dirty );
    sqliteOsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
    CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
    TRACE2("STORE %d\n", pList->pgno);
    rc = sqliteOsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
    CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
    if( rc ) return rc;
    pList->dirty = 0;
    pList = pList->pDirty;
  }
  return SQLITE_OK;
}
pager.c1246
STATIC PGHDR pager_get_all_dirty_pages(Pager *pPager)
static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
  PgHdr *p, *pList;
  pList = 0;
  for(p=pPager->pAll; p; p=p->pNextAll){
    if( p->dirty ){
      p->pDirty = pList;
      pList = p;
    }
  }
  return pList;
}
pager.c1271
INTsqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage)
int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){
  PgHdr *pPg;
  int rc;

  /* Make sure we have not hit any critical errors.
  */ 
  assert( pPager!=0 );
  assert( pgno!=0 );
  *ppPage = 0;
  if( pPager->errMask & ~(PAGER_ERR_FULL) ){
    return pager_errcode(pPager);
  }

  /* If this is the first page accessed, then get a read lock
  ** on the database file.
  */
  if( pPager->nRef==0 ){
    rc = sqliteOsReadLock(&pPager->fd);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pPager->state = SQLITE_READLOCK;

    /* If a journal file exists, try to play it back.
    */
    if( pPager->useJournal && sqliteOsFileExists(pPager->zJournal) ){
       int rc;

       /* Get a write lock on the database
       */
       rc = sqliteOsWriteLock(&pPager->fd);
       if( rc!=SQLITE_OK ){
         if( sqliteOsUnlock(&pPager->fd)!=SQLITE_OK ){
           /* This should never happen! */
           rc = SQLITE_INTERNAL;
         }
         return rc;
       }
       pPager->state = SQLITE_WRITELOCK;

       /* Open the journal for reading only.  Return SQLITE_BUSY if
       ** we are unable to open the journal file. 
       **
       ** The journal file does not need to be locked itself.  The
       ** journal file is never open unless the main database file holds
       ** a write lock, so there is never any chance of two or more
       ** processes opening the journal at the same time.
       */
       rc = sqliteOsOpenReadOnly(pPager->zJournal, &pPager->jfd);
       if( rc!=SQLITE_OK ){
         rc = sqliteOsUnlock(&pPager->fd);
         assert( rc==SQLITE_OK );
         return SQLITE_BUSY;
       }
       pPager->journalOpen = 1;
       pPager->journalStarted = 0;

       /* Playback and delete the journal.  Drop the database write
       ** lock and reacquire the read lock.
       */
       rc = pager_playback(pPager, 0);
       if( rc!=SQLITE_OK ){
         return rc;
       }
    }
    pPg = 0;
  }else{
    /* Search for page in cache */
    pPg = pager_lookup(pPager, pgno);
  }
  if( pPg==0 ){
    /* The requested page is not in the page cache. */
    int h;
    pPager->nMiss++;
    if( pPager->nPagemxPage || pPager->pFirst==0 ){
      /* Create a new page */
      pPg = sqliteMallocRaw( sizeof(*pPg) + SQLITE_PAGE_SIZE 
                              + sizeof(u32) + pPager->nExtra );
      if( pPg==0 ){
        pager_unwritelock(pPager);
        pPager->errMask |= PAGER_ERR_MEM;
        return SQLITE_NOMEM;
      }
      memset(pPg, 0, sizeof(*pPg));
      pPg->pPager = pPager;
      pPg->pNextAll = pPager->pAll;
      if( pPager->pAll ){
        pPager->pAll->pPrevAll = pPg;
      }
      pPg->pPrevAll = 0;
      pPager->pAll = pPg;
      pPager->nPage++;
    }else{
      /* Find a page to recycle.  Try to locate a page that does not
      ** require us to do an fsync() on the journal.
      */
      pPg = pPager->pFirstSynced;

      /* If we could not find a page that does not require an fsync()
      ** on the journal file then fsync the journal file.  This is a
      ** very slow operation, so we work hard to avoid it.  But sometimes
      ** it can't be helped.
      */
      if( pPg==0 ){
        int rc = syncJournal(pPager);
        if( rc!=0 ){
          sqlitepager_rollback(pPager);
          return SQLITE_IOERR;
        }
        pPg = pPager->pFirst;
      }
      assert( pPg->nRef==0 );

      /* Write the page to the database file if it is dirty.
      */
      if( pPg->dirty ){
        assert( pPg->needSync==0 );
        pPg->pDirty = 0;
        rc = pager_write_pagelist( pPg );
        if( rc!=SQLITE_OK ){
          sqlitepager_rollback(pPager);
          return SQLITE_IOERR;
        }
      }
      assert( pPg->dirty==0 );

      /* If the page we are recycling is marked as alwaysRollback, then
      ** set the global alwaysRollback flag, thus disabling the
      ** sqlite_dont_rollback() optimization for the rest of this transaction.
      ** It is necessary to do this because the page marked alwaysRollback
      ** might be reloaded at a later time but at that point we won't remember
      ** that is was marked alwaysRollback.  This means that all pages must
      ** be marked as alwaysRollback from here on out.
      */
      if( pPg->alwaysRollback ){
        pPager->alwaysRollback = 1;
      }

      /* Unlink the old page from the free list and the hash table
      */
      if( pPg==pPager->pFirstSynced ){
        PgHdr *p = pPg->pNextFree;
        while( p && p->needSync ){ p = p->pNextFree; }
        pPager->pFirstSynced = p;
      }
      if( pPg->pPrevFree ){
        pPg->pPrevFree->pNextFree = pPg->pNextFree;
      }else{
        assert( pPager->pFirst==pPg );
        pPager->pFirst = pPg->pNextFree;
      }
      if( pPg->pNextFree ){
        pPg->pNextFree->pPrevFree = pPg->pPrevFree;
      }else{
        assert( pPager->pLast==pPg );
        pPager->pLast = pPg->pPrevFree;
      }
      pPg->pNextFree = pPg->pPrevFree = 0;
      if( pPg->pNextHash ){
        pPg->pNextHash->pPrevHash = pPg->pPrevHash;
      }
      if( pPg->pPrevHash ){
        pPg->pPrevHash->pNextHash = pPg->pNextHash;
      }else{
        h = pager_hash(pPg->pgno);
        assert( pPager->aHash[h]==pPg );
        pPager->aHash[h] = pPg->pNextHash;
      }
      pPg->pNextHash = pPg->pPrevHash = 0;
      pPager->nOvfl++;
    }
    pPg->pgno = pgno;
    if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
      sqliteCheckMemory(pPager->aInJournal, pgno/8);
      assert( pPager->journalOpen );
      pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
      pPg->needSync = 0;
    }else{
      pPg->inJournal = 0;
      pPg->needSync = 0;
    }
    if( pPager->aInCkpt && (int)pgno<=pPager->ckptSize
             && (pPager->aInCkpt[pgno/8] & (1<<(pgno&7)))!=0 ){
      page_add_to_ckpt_list(pPg);
    }else{
      page_remove_from_ckpt_list(pPg);
    }
    pPg->dirty = 0;
    pPg->nRef = 1;
    REFINFO(pPg);
    pPager->nRef++;
    h = pager_hash(pgno);
    pPg->pNextHash = pPager->aHash[h];
    pPager->aHash[h] = pPg;
    if( pPg->pNextHash ){
      assert( pPg->pNextHash->pPrevHash==0 );
      pPg->pNextHash->pPrevHash = pPg;
    }
    if( pPager->nExtra>0 ){
      memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
    }
    if( pPager->dbSize<0 ) sqlitepager_pagecount(pPager);
    if( pPager->errMask!=0 ){
      sqlitepager_unref(PGHDR_TO_DATA(pPg));
      rc = pager_errcode(pPager);
      return rc;
    }
    if( pPager->dbSize<(int)pgno ){
      memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
    }else{
      int rc;
      sqliteOsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
      rc = sqliteOsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
      TRACE2("FETCH %d\n", pPg->pgno);
      CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
      if( rc!=SQLITE_OK ){
        off_t fileSize;
        if( sqliteOsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
               || fileSize>=pgno*SQLITE_PAGE_SIZE ){
          sqlitepager_unref(PGHDR_TO_DATA(pPg));
          return rc;
        }else{
          memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
        }
      }
    }
  }else{
    /* The requested page is in the page cache. */
    pPager->nHit++;
    page_ref(pPg);
  }
  *ppPage = PGHDR_TO_DATA(pPg);
  return SQLITE_OK;
}
pager.c1288
VOID sqlitepager_lookup(Pager *pPager, Pgno pgno)
void *sqlitepager_lookup(Pager *pPager, Pgno pgno){
  PgHdr *pPg;

  assert( pPager!=0 );
  assert( pgno!=0 );
  if( pPager->errMask & ~(PAGER_ERR_FULL) ){
    return 0;
  }
  /* if( pPager->nRef==0 ){
  **  return 0;
  ** }
  */
  pPg = pager_lookup(pPager, pgno);
  if( pPg==0 ) return 0;
  page_ref(pPg);
  return PGHDR_TO_DATA(pPg);
}
pager.c1546
INTsqlitepager_unref(void *pData)
int sqlitepager_unref(void *pData){
  PgHdr *pPg;

  /* Decrement the reference count for this page
  */
  pPg = DATA_TO_PGHDR(pData);
  assert( pPg->nRef>0 );
  pPg->nRef--;
  REFINFO(pPg);

  /* When the number of references to a page reach 0, call the
  ** destructor and add the page to the freelist.
  */
  if( pPg->nRef==0 ){
    Pager *pPager;
    pPager = pPg->pPager;
    pPg->pNextFree = 0;
    pPg->pPrevFree = pPager->pLast;
    pPager->pLast = pPg;
    if( pPg->pPrevFree ){
      pPg->pPrevFree->pNextFree = pPg;
    }else{
      pPager->pFirst = pPg;
    }
    if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
      pPager->pFirstSynced = pPg;
    }
    if( pPager->xDestructor ){
      pPager->xDestructor(pData);
    }
  
    /* When all pages reach the freelist, drop the read lock from
    ** the database file.
    */
    pPager->nRef--;
    assert( pPager->nRef>=0 );
    if( pPager->nRef==0 ){
      pager_reset(pPager);
    }
  }
  return SQLITE_OK;
}
pager.c1575
STATIC INTpager_open_journal(Pager *pPager)
static int pager_open_journal(Pager *pPager){
  int rc;
  assert( pPager->state==SQLITE_WRITELOCK );
  assert( pPager->journalOpen==0 );
  assert( pPager->useJournal );
  sqlitepager_pagecount(pPager);
  pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
  if( pPager->aInJournal==0 ){
    sqliteOsReadLock(&pPager->fd);
    pPager->state = SQLITE_READLOCK;
    return SQLITE_NOMEM;
  }
  rc = sqliteOsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
  if( rc!=SQLITE_OK ){
    sqliteFree(pPager->aInJournal);
    pPager->aInJournal = 0;
    sqliteOsReadLock(&pPager->fd);
    pPager->state = SQLITE_READLOCK;
    return SQLITE_CANTOPEN;
  }
  sqliteOsOpenDirectory(pPager->zDirectory, &pPager->jfd);
  pPager->journalOpen = 1;
  pPager->journalStarted = 0;
  pPager->needSync = 0;
  pPager->alwaysRollback = 0;
  pPager->nRec = 0;
  if( pPager->errMask!=0 ){
    rc = pager_errcode(pPager);
    return rc;
  }
  pPager->origDbSize = pPager->dbSize;
  if( journal_format==JOURNAL_FORMAT_3 ){
    rc = sqliteOsWrite(&pPager->jfd, aJournalMagic3, sizeof(aJournalMagic3));
    if( rc==SQLITE_OK ){
      rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
    }
    if( rc==SQLITE_OK ){
      sqliteRandomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
      rc = write32bits(&pPager->jfd, pPager->cksumInit);
    }
  }else if( journal_format==JOURNAL_FORMAT_2 ){
    rc = sqliteOsWrite(&pPager->jfd, aJournalMagic2, sizeof(aJournalMagic2));
  }else{
    assert( journal_format==JOURNAL_FORMAT_1 );
    rc = sqliteOsWrite(&pPager->jfd, aJournalMagic1, sizeof(aJournalMagic1));
  }
  if( rc==SQLITE_OK ){
    rc = write32bits(&pPager->jfd, pPager->dbSize);
  }
  if( pPager->ckptAutoopen && rc==SQLITE_OK ){
    rc = sqlitepager_ckpt_begin(pPager);
  }
  if( rc!=SQLITE_OK ){
    rc = pager_unwritelock(pPager);
    if( rc==SQLITE_OK ){
      rc = SQLITE_FULL;
    }
  }
  return rc;  
}
pager.c1626
INTsqlitepager_begin(void *pData)
int sqlitepager_begin(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;
  assert( pPg->nRef>0 );
  assert( pPager->state!=SQLITE_UNLOCK );
  if( pPager->state==SQLITE_READLOCK ){
    assert( pPager->aInJournal==0 );
    rc = sqliteOsWriteLock(&pPager->fd);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pPager->state = SQLITE_WRITELOCK;
    pPager->dirtyFile = 0;
    TRACE1("TRANSACTION\n");
    if( pPager->useJournal && !pPager->tempFile ){
      rc = pager_open_journal(pPager);
    }
  }
  return rc;
}
pager.c1694
INTsqlitepager_write(void *pData)
int sqlitepager_write(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;

  /* Check for errors
  */
  if( pPager->errMask ){ 
    return pager_errcode(pPager);
  }
  if( pPager->readOnly ){
    return SQLITE_PERM;
  }

  /* Mark the page as dirty.  If the page has already been written
  ** to the journal then we can return right away.
  */
  pPg->dirty = 1;
  if( pPg->inJournal && (pPg->inCkpt || pPager->ckptInUse==0) ){
    pPager->dirtyFile = 1;
    return SQLITE_OK;
  }

  /* If we get this far, it means that the page needs to be
  ** written to the transaction journal or the ckeckpoint journal
  ** or both.
  **
  ** First check to see that the transaction journal exists and
  ** create it if it does not.
  */
  assert( pPager->state!=SQLITE_UNLOCK );
  rc = sqlitepager_begin(pData);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pPager->state==SQLITE_WRITELOCK );
  if( !pPager->journalOpen && pPager->useJournal ){
    rc = pager_open_journal(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  assert( pPager->journalOpen || !pPager->useJournal );
  pPager->dirtyFile = 1;

  /* The transaction journal now exists and we have a write lock on the
  ** main database file.  Write the current page to the transaction 
  ** journal if it is not there already.
  */
  if( !pPg->inJournal && pPager->useJournal ){
    if( (int)pPg->pgno <= pPager->origDbSize ){
      int szPg;
      u32 saved;
      if( journal_format>=JOURNAL_FORMAT_3 ){
        u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
        saved = *(u32*)PGHDR_TO_EXTRA(pPg);
        store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
        szPg = SQLITE_PAGE_SIZE+8;
      }else{
        szPg = SQLITE_PAGE_SIZE+4;
      }
      store32bits(pPg->pgno, pPg, -4);
      CODEC(pPager, pData, pPg->pgno, 7);
      rc = sqliteOsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
      TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
      CODEC(pPager, pData, pPg->pgno, 0);
      if( journal_format>=JOURNAL_FORMAT_3 ){
        *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
      }
      if( rc!=SQLITE_OK ){
        sqlitepager_rollback(pPager);
        pPager->errMask |= PAGER_ERR_FULL;
        return rc;
      }
      pPager->nRec++;
      assert( pPager->aInJournal!=0 );
      pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
      pPg->needSync = !pPager->noSync;
      pPg->inJournal = 1;
      if( pPager->ckptInUse ){
        pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
        page_add_to_ckpt_list(pPg);
      }
    }else{
      pPg->needSync = !pPager->journalStarted && !pPager->noSync;
      TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
    }
    if( pPg->needSync ){
      pPager->needSync = 1;
    }
  }

  /* If the checkpoint journal is open and the page is not in it,
  ** then write the current page to the checkpoint journal.  Note that
  ** the checkpoint journal always uses the simplier format 2 that lacks
  ** checksums.  The header is also omitted from the checkpoint journal.
  */
  if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    store32bits(pPg->pgno, pPg, -4);
    CODEC(pPager, pData, pPg->pgno, 7);
    rc = sqliteOsWrite(&pPager->cpfd, &((char*)pData)[-4], SQLITE_PAGE_SIZE+4);
    TRACE2("CKPT-JOURNAL %d\n", pPg->pgno);
    CODEC(pPager, pData, pPg->pgno, 0);
    if( rc!=SQLITE_OK ){
      sqlitepager_rollback(pPager);
      pPager->errMask |= PAGER_ERR_FULL;
      return rc;
    }
    pPager->ckptNRec++;
    assert( pPager->aInCkpt!=0 );
    pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    page_add_to_ckpt_list(pPg);
  }

  /* Update the database size and return.
  */
  if( pPager->dbSize<(int)pPg->pgno ){
    pPager->dbSize = pPg->pgno;
  }
  return rc;
}
pager.c1736
INTsqlitepager_iswriteable(void *pData)
int sqlitepager_iswriteable(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  return pPg->dirty;
}
pager.c1874
INTsqlitepager_overwrite(Pager *pPager, Pgno pgno, void *pData)
int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void *pData){
  void *pPage;
  int rc;

  rc = sqlitepager_get(pPager, pgno, &pPage);
  if( rc==SQLITE_OK ){
    rc = sqlitepager_write(pPage);
    if( rc==SQLITE_OK ){
      memcpy(pPage, pData, SQLITE_PAGE_SIZE);
    }
    sqlitepager_unref(pPage);
  }
  return rc;
}
pager.c1884
VOIDsqlitepager_dont_write(Pager *pPager, Pgno pgno)
void sqlitepager_dont_write(Pager *pPager, Pgno pgno){
  PgHdr *pPg;

  pPg = pager_lookup(pPager, pgno);
  pPg->alwaysRollback = 1;
  if( pPg && pPg->dirty ){
    if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSizedbSize ){
      /* If this pages is the last page in the file and the file has grown
      ** during the current transaction, then do NOT mark the page as clean.
      ** When the database file grows, we must make sure that the last page
      ** gets written at least once so that the disk file will be the correct
      ** size. If you do not write this page and the size of the file
      ** on the disk ends up being too small, that can lead to database
      ** corruption during the next transaction.
      */
    }else{
      TRACE2("DONT_WRITE %d\n", pgno);
      pPg->dirty = 0;
    }
  }
}
pager.c1903
VOIDsqlitepager_dont_rollback(void *pData)
void sqlitepager_dont_rollback(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;

  if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
  if( pPg->alwaysRollback || pPager->alwaysRollback ) return;
  if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
    assert( pPager->aInJournal!=0 );
    pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    pPg->inJournal = 1;
    if( pPager->ckptInUse ){
      pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
      page_add_to_ckpt_list(pPg);
    }
    TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
  }
  if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    assert( pPager->aInCkpt!=0 );
    pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    page_add_to_ckpt_list(pPg);
  }
}
pager.c1949
INTsqlitepager_commit(Pager *pPager)
int sqlitepager_commit(Pager *pPager){
  int rc;
  PgHdr *pPg;

  if( pPager->errMask==PAGER_ERR_FULL ){
    rc = sqlitepager_rollback(pPager);
    if( rc==SQLITE_OK ){
      rc = SQLITE_FULL;
    }
    return rc;
  }
  if( pPager->errMask!=0 ){
    rc = pager_errcode(pPager);
    return rc;
  }
  if( pPager->state!=SQLITE_WRITELOCK ){
    return SQLITE_ERROR;
  }
  TRACE1("COMMIT\n");
  if( pPager->dirtyFile==0 ){
    /* Exit early (without doing the time-consuming sqliteOsSync() calls)
    ** if there have been no changes to the database file. */
    assert( pPager->needSync==0 );
    rc = pager_unwritelock(pPager);
    pPager->dbSize = -1;
    return rc;
  }
  assert( pPager->journalOpen );
  rc = syncJournal(pPager);
  if( rc!=SQLITE_OK ){
    goto commit_abort;
  }
  pPg = pager_get_all_dirty_pages(pPager);
  if( pPg ){
    rc = pager_write_pagelist(pPg);
    if( rc || (!pPager->noSync && sqliteOsSync(&pPager->fd)!=SQLITE_OK) ){
      goto commit_abort;
    }
  }
  rc = pager_unwritelock(pPager);
  pPager->dbSize = -1;
  return rc;

  /* Jump here if anything goes wrong during the commit process.
  */
commit_abort:
  rc = sqlitepager_rollback(pPager);
  if( rc==SQLITE_OK ){
    rc = SQLITE_FULL;
  }
  return rc;
}
pager.c1979
INTsqlitepager_rollback(Pager *pPager)
int sqlitepager_rollback(Pager *pPager){
  int rc;
  TRACE1("ROLLBACK\n");
  if( !pPager->dirtyFile || !pPager->journalOpen ){
    rc = pager_unwritelock(pPager);
    pPager->dbSize = -1;
    return rc;
  }

  if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
    if( pPager->state>=SQLITE_WRITELOCK ){
      pager_playback(pPager, 1);
    }
    return pager_errcode(pPager);
  }
  if( pPager->state!=SQLITE_WRITELOCK ){
    return SQLITE_OK;
  }
  rc = pager_playback(pPager, 1);
  if( rc!=SQLITE_OK ){
    rc = SQLITE_CORRUPT;
    pPager->errMask |= PAGER_ERR_CORRUPT;
  }
  pPager->dbSize = -1;
  return rc;
}
pager.c2039
INTsqlitepager_isreadonly(Pager *pPager)
int sqlitepager_isreadonly(Pager *pPager){
  return pPager->readOnly;
}
pager.c2078
INT sqlitepager_stats(Pager *pPager)
int *sqlitepager_stats(Pager *pPager){
  static int a[9];
  a[0] = pPager->nRef;
  a[1] = pPager->nPage;
  a[2] = pPager->mxPage;
  a[3] = pPager->dbSize;
  a[4] = pPager->state;
  a[5] = pPager->errMask;
  a[6] = pPager->nHit;
  a[7] = pPager->nMiss;
  a[8] = pPager->nOvfl;
  return a;
}
pager.c2086
INTsqlitepager_ckpt_begin(Pager *pPager)
int sqlitepager_ckpt_begin(Pager *pPager){
  int rc;
  char zTemp[SQLITE_TEMPNAME_SIZE];
  if( !pPager->journalOpen ){
    pPager->ckptAutoopen = 1;
    return SQLITE_OK;
  }
  assert( pPager->journalOpen );
  assert( !pPager->ckptInUse );
  pPager->aInCkpt = sqliteMalloc( pPager->dbSize/8 + 1 );
  if( pPager->aInCkpt==0 ){
    sqliteOsReadLock(&pPager->fd);
    return SQLITE_NOMEM;
  }
#ifndef NDEBUG
  rc = sqliteOsFileSize(&pPager->jfd, &pPager->ckptJSize);
  if( rc ) goto ckpt_begin_failed;
  assert( pPager->ckptJSize == 
    pPager->nRec*JOURNAL_PG_SZ(journal_format)+JOURNAL_HDR_SZ(journal_format) );
#endif
  pPager->ckptJSize = pPager->nRec*JOURNAL_PG_SZ(journal_format)
                         + JOURNAL_HDR_SZ(journal_format);
  pPager->ckptSize = pPager->dbSize;
  if( !pPager->ckptOpen ){
    rc = sqlitepager_opentemp(zTemp, &pPager->cpfd);
    if( rc ) goto ckpt_begin_failed;
    pPager->ckptOpen = 1;
    pPager->ckptNRec = 0;
  }
  pPager->ckptInUse = 1;
  return SQLITE_OK;
 
ckpt_begin_failed:
  if( pPager->aInCkpt ){
    sqliteFree(pPager->aInCkpt);
    pPager->aInCkpt = 0;
  }
  return rc;
}
pager.c2103
INTsqlitepager_ckpt_commit(Pager *pPager)
int sqlitepager_ckpt_commit(Pager *pPager){
  if( pPager->ckptInUse ){
    PgHdr *pPg, *pNext;
    sqliteOsSeek(&pPager->cpfd, 0);
    /* sqliteOsTruncate(&pPager->cpfd, 0); */
    pPager->ckptNRec = 0;
    pPager->ckptInUse = 0;
    sqliteFree( pPager->aInCkpt );
    pPager->aInCkpt = 0;
    for(pPg=pPager->pCkpt; pPg; pPg=pNext){
      pNext = pPg->pNextCkpt;
      assert( pPg->inCkpt );
      pPg->inCkpt = 0;
      pPg->pPrevCkpt = pPg->pNextCkpt = 0;
    }
    pPager->pCkpt = 0;
  }
  pPager->ckptAutoopen = 0;
  return SQLITE_OK;
}
pager.c2150
INTsqlitepager_ckpt_rollback(Pager *pPager)
int sqlitepager_ckpt_rollback(Pager *pPager){
  int rc;
  if( pPager->ckptInUse ){
    rc = pager_ckpt_playback(pPager);
    sqlitepager_ckpt_commit(pPager);
  }else{
    rc = SQLITE_OK;
  }
  pPager->ckptAutoopen = 0;
  return rc;
}
pager.c2174
CONST CHAR sqlitepager_filename(Pager *pPager)
const char *sqlitepager_filename(Pager *pPager){
  return pPager->zFilename;
}
pager.c2189
VOID SQLITEPAGER_SET_CODEC( PAGER *PPAGER, VOID (*XCODEC(void*,void*,Pgno,int), void *pCodecArg )
void sqlitepager_set_codec(
  Pager *pPager,
  void (*xCodec)(void*,void*,Pgno,int),
  void *pCodecArg
){
  pPager->xCodec = xCodec;
  pPager->pCodecArg = pCodecArg;
}
pager.c2196
VOIDsqlitepager_refdump(Pager *pPager)
void sqlitepager_refdump(Pager *pPager){
  PgHdr *pPg;
  for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
    if( pPg->nRef<=0 ) continue;
    printf("PAGE %3d addr=0x%08x nRef=%d\n", 
       pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
  }
}
pager.c2209
parse.c
TypeFunctionSourceLine
VOIDsqliteParserTrace(FILE *TraceFILE, char *zTracePrompt)
void sqliteParserTrace(FILE *TraceFILE, char *zTracePrompt){
  yyTraceFILE = TraceFILE;
  yyTracePrompt = zTracePrompt;
  if( yyTraceFILE==0 ) yyTracePrompt = 0;
  else if( yyTracePrompt==0 ) yyTraceFILE = 0;
}
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required.  The following table supplies these names */
static const char *yyTokenName[] = { 
  "$",             "END_OF_FILE",   "ILLEGAL",       "SPACE",       
  "UNCLOSED_STRING",  "COMMENT",       "FUNCTION",      "COLUMN",      
  "AGG_FUNCTION",  "SEMI",          "EXPLAIN",       "BEGIN",       
  "TRANSACTION",   "COMMIT",        "END",           "ROLLBACK",    
  "CREATE",        "TABLE",         "TEMP",          "LP",          
  "RP",            "AS",            "COMMA",         "ID",          
  "ABORT",         "AFTER",         "ASC",           "ATTACH",      
  "BEFORE",        "CASCADE",       "CLUSTER",       "CONFLICT",    
  "COPY",          "DATABASE",      "DEFERRED",      "DELIMITERS",  
  "DESC",          "DETACH",        "EACH",          "FAIL",        
  "FOR",           "GLOB",          "IGNORE",        "IMMEDIATE",   
  "INITIALLY",     "INSTEAD",       "LIKE",          "MATCH",       
  "KEY",           "OF",            "OFFSET",        "PRAGMA",      
  "RAISE",         "REPLACE",       "RESTRICT",      "ROW",         
  "STATEMENT",     "TRIGGER",       "VACUUM",        "VIEW",        
  "OR",            "AND",           "NOT",           "EQ",          
  "NE",            "ISNULL",        "NOTNULL",       "IS",          
  "BETWEEN",       "IN",            "GT",            "GE",          
  "LT",            "LE",            "BITAND",        "BITOR",       
  "LSHIFT",        "RSHIFT",        "PLUS",          "MINUS",       
  "STAR",          "SLASH",         "REM",           "CONCAT",      
  "UMINUS",        "UPLUS",         "BITNOT",        "STRING",      
  "JOIN_KW",       "INTEGER",       "CONSTRAINT",    "DEFAULT",     
  "FLOAT",         "NULL",          "PRIMARY",       "UNIQUE",      
  "CHECK",         "REFERENCES",    "COLLATE",       "ON",          
  "DELETE",        "UPDATE",        "INSERT",        "SET",         
  "DEFERRABLE",    "FOREIGN",       "DROP",          "UNION",       
  "ALL",           "INTERSECT",     "EXCEPT",        "SELECT",      
  "DISTINCT",      "DOT",           "FROM",          "JOIN",        
  "USING",         "ORDER",         "BY",            "GROUP",       
  "HAVING",        "LIMIT",         "WHERE",         "INTO",        
  "VALUES",        "VARIABLE",      "CASE",          "WHEN",        
  "THEN",          "ELSE",          "INDEX",         "error",       
  "input",         "cmdlist",       "ecmd",          "explain",     
  "cmdx",          "cmd",           "trans_opt",     "onconf",      
  "nm",            "create_table",  "create_table_args",  "temp",        
  "columnlist",    "conslist_opt",  "select",        "column",      
  "columnid",      "type",          "carglist",      "id",          
  "ids",           "typename",      "signed",        "carg",        
  "ccons",         "sortorder",     "expr",          "idxlist_opt", 
  "refargs",       "defer_subclause",  "refarg",        "refact",      
  "init_deferred_pred_opt",  "conslist",      "tcons",         "idxlist",     
  "defer_subclause_opt",  "orconf",        "resolvetype",   "oneselect",   
  "multiselect_op",  "distinct",      "selcollist",    "from",        
  "where_opt",     "groupby_opt",   "having_opt",    "orderby_opt", 
  "limit_opt",     "sclp",          "as",            "seltablist",  
  "stl_prefix",    "joinop",        "dbnm",          "on_opt",      
  "using_opt",     "seltablist_paren",  "joinop2",       "sortlist",    
  "sortitem",      "collate",       "exprlist",      "setlist",     
  "insert_cmd",    "inscollist_opt",  "itemlist",      "inscollist",  
  "likeop",        "case_operand",  "case_exprlist",  "case_else",   
  "expritem",      "uniqueflag",    "idxitem",       "plus_num",    
  "minus_num",     "plus_opt",      "number",        "trigger_decl",
  "trigger_cmd_list",  "trigger_time",  "trigger_event",  "foreach_clause",
  "when_clause",   "trigger_cmd",   "database_kw_opt",  "key_opt",     
};
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *yyRuleName[] = {
 /*   0 */ "input ::= cmdlist",
 /*   1 */ "cmdlist ::= cmdlist ecmd",
 /*   2 */ "cmdlist ::= ecmd",
 /*   3 */ "ecmd ::= explain cmdx SEMI",
 /*   4 */ "ecmd ::= SEMI",
 /*   5 */ "cmdx ::= cmd",
 /*   6 */ "explain ::= EXPLAIN",
 /*   7 */ "explain ::=",
 /*   8 */ "cmd ::= BEGIN trans_opt onconf",
 /*   9 */ "trans_opt ::=",
 /*  10 */ "trans_opt ::= TRANSACTION",
 /*  11 */ "trans_opt ::= TRANSACTION nm",
 /*  12 */ "cmd ::= COMMIT trans_opt",
 /*  13 */ "cmd ::= END trans_opt",
 /*  14 */ "cmd ::= ROLLBACK trans_opt",
 /*  15 */ "cmd ::= create_table create_table_args",
 /*  16 */ "create_table ::= CREATE temp TABLE nm",
 /*  17 */ "temp ::= TEMP",
 /*  18 */ "temp ::=",
 /*  19 */ "create_table_args ::= LP columnlist conslist_opt RP",
 /*  20 */ "create_table_args ::= AS select",
 /*  21 */ "columnlist ::= columnlist COMMA column",
 /*  22 */ "columnlist ::= column",
 /*  23 */ "column ::= columnid type carglist",
 /*  24 */ "columnid ::= nm",
 /*  25 */ "id ::= ID",
 /*  26 */ "ids ::= ID",
 /*  27 */ "ids ::= STRING",
 /*  28 */ "nm ::= ID",
 /*  29 */ "nm ::= STRING",
 /*  30 */ "nm ::= JOIN_KW",
 /*  31 */ "type ::=",
 /*  32 */ "type ::= typename",
 /*  33 */ "type ::= typename LP signed RP",
 /*  34 */ "type ::= typename LP signed COMMA signed RP",
 /*  35 */ "typename ::= ids",
 /*  36 */ "typename ::= typename ids",
 /*  37 */ "signed ::= INTEGER",
 /*  38 */ "signed ::= PLUS INTEGER",
 /*  39 */ "signed ::= MINUS INTEGER",
 /*  40 */ "carglist ::= carglist carg",
 /*  41 */ "carglist ::=",
 /*  42 */ "carg ::= CONSTRAINT nm ccons",
 /*  43 */ "carg ::= ccons",
 /*  44 */ "carg ::= DEFAULT STRING",
 /*  45 */ "carg ::= DEFAULT ID",
 /*  46 */ "carg ::= DEFAULT INTEGER",
 /*  47 */ "carg ::= DEFAULT PLUS INTEGER",
 /*  48 */ "carg ::= DEFAULT MINUS INTEGER",
 /*  49 */ "carg ::= DEFAULT FLOAT",
 /*  50 */ "carg ::= DEFAULT PLUS FLOAT",
 /*  51 */ "carg ::= DEFAULT MINUS FLOAT",
 /*  52 */ "carg ::= DEFAULT NULL",
 /*  53 */ "ccons ::= NULL onconf",
 /*  54 */ "ccons ::= NOT NULL onconf",
 /*  55 */ "ccons ::= PRIMARY KEY sortorder onconf",
 /*  56 */ "ccons ::= UNIQUE onconf",
 /*  57 */ "ccons ::= CHECK LP expr RP onconf",
 /*  58 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
 /*  59 */ "ccons ::= defer_subclause",
 /*  60 */ "ccons ::= COLLATE id",
 /*  61 */ "refargs ::=",
 /*  62 */ "refargs ::= refargs refarg",
 /*  63 */ "refarg ::= MATCH nm",
 /*  64 */ "refarg ::= ON DELETE refact",
 /*  65 */ "refarg ::= ON UPDATE refact",
 /*  66 */ "refarg ::= ON INSERT refact",
 /*  67 */ "refact ::= SET NULL",
 /*  68 */ "refact ::= SET DEFAULT",
 /*  69 */ "refact ::= CASCADE",
 /*  70 */ "refact ::= RESTRICT",
 /*  71 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
 /*  72 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
 /*  73 */ "init_deferred_pred_opt ::=",
 /*  74 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
 /*  75 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
 /*  76 */ "conslist_opt ::=",
 /*  77 */ "conslist_opt ::= COMMA conslist",
 /*  78 */ "conslist ::= conslist COMMA tcons",
 /*  79 */ "conslist ::= conslist tcons",
 /*  80 */ "conslist ::= tcons",
 /*  81 */ "tcons ::= CONSTRAINT nm",
 /*  82 */ "tcons ::= PRIMARY KEY LP idxlist RP onconf",
 /*  83 */ "tcons ::= UNIQUE LP idxlist RP onconf",
 /*  84 */ "tcons ::= CHECK expr onconf",
 /*  85 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
 /*  86 */ "defer_subclause_opt ::=",
 /*  87 */ "defer_subclause_opt ::= defer_subclause",
 /*  88 */ "onconf ::=",
 /*  89 */ "onconf ::= ON CONFLICT resolvetype",
 /*  90 */ "orconf ::=",
 /*  91 */ "orconf ::= OR resolvetype",
 /*  92 */ "resolvetype ::= ROLLBACK",
 /*  93 */ "resolvetype ::= ABORT",
 /*  94 */ "resolvetype ::= FAIL",
 /*  95 */ "resolvetype ::= IGNORE",
 /*  96 */ "resolvetype ::= REPLACE",
 /*  97 */ "cmd ::= DROP TABLE nm",
 /*  98 */ "cmd ::= CREATE temp VIEW nm AS select",
 /*  99 */ "cmd ::= DROP VIEW nm",
 /* 100 */ "cmd ::= select",
 /* 101 */ "select ::= oneselect",
 /* 102 */ "select ::= select multiselect_op oneselect",
 /* 103 */ "multiselect_op ::= UNION",
 /* 104 */ "multiselect_op ::= UNION ALL",
 /* 105 */ "multiselect_op ::= INTERSECT",
 /* 106 */ "multiselect_op ::= EXCEPT",
 /* 107 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
 /* 108 */ "distinct ::= DISTINCT",
 /* 109 */ "distinct ::= ALL",
 /* 110 */ "distinct ::=",
 /* 111 */ "sclp ::= selcollist COMMA",
 /* 112 */ "sclp ::=",
 /* 113 */ "selcollist ::= sclp expr as",
 /* 114 */ "selcollist ::= sclp STAR",
 /* 115 */ "selcollist ::= sclp nm DOT STAR",
 /* 116 */ "as ::= AS nm",
 /* 117 */ "as ::= ids",
 /* 118 */ "as ::=",
 /* 119 */ "from ::=",
 /* 120 */ "from ::= FROM seltablist",
 /* 121 */ "stl_prefix ::= seltablist joinop",
 /* 122 */ "stl_prefix ::=",
 /* 123 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
 /* 124 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
 /* 125 */ "seltablist_paren ::= select",
 /* 126 */ "seltablist_paren ::= seltablist",
 /* 127 */ "dbnm ::=",
 /* 128 */ "dbnm ::= DOT nm",
 /* 129 */ "joinop ::= COMMA",
 /* 130 */ "joinop ::= JOIN",
 /* 131 */ "joinop ::= JOIN_KW JOIN",
 /* 132 */ "joinop ::= JOIN_KW nm JOIN",
 /* 133 */ "joinop ::= JOIN_KW nm nm JOIN",
 /* 134 */ "on_opt ::= ON expr",
 /* 135 */ "on_opt ::=",
 /* 136 */ "using_opt ::= USING LP idxlist RP",
 /* 137 */ "using_opt ::=",
 /* 138 */ "orderby_opt ::=",
 /* 139 */ "orderby_opt ::= ORDER BY sortlist",
 /* 140 */ "sortlist ::= sortlist COMMA sortitem collate sortorder",
 /* 141 */ "sortlist ::= sortitem collate sortorder",
 /* 142 */ "sortitem ::= expr",
 /* 143 */ "sortorder ::= ASC",
 /* 144 */ "sortorder ::= DESC",
 /* 145 */ "sortorder ::=",
 /* 146 */ "collate ::=",
 /* 147 */ "collate ::= COLLATE id",
 /* 148 */ "groupby_opt ::=",
 /* 149 */ "groupby_opt ::= GROUP BY exprlist",
 /* 150 */ "having_opt ::=",
 /* 151 */ "having_opt ::= HAVING expr",
 /* 152 */ "limit_opt ::=",
 /* 153 */ "limit_opt ::= LIMIT signed",
 /* 154 */ "limit_opt ::= LIMIT signed OFFSET signed",
 /* 155 */ "limit_opt ::= LIMIT signed COMMA signed",
 /* 156 */ "cmd ::= DELETE FROM nm dbnm where_opt",
 /* 157 */ "where_opt ::=",
 /* 158 */ "where_opt ::= WHERE expr",
 /* 159 */ "cmd ::= UPDATE orconf nm dbnm SET setlist where_opt",
 /* 160 */ "setlist ::= setlist COMMA nm EQ expr",
 /* 161 */ "setlist ::= nm EQ expr",
 /* 162 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt VALUES LP itemlist RP",
 /* 163 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt select",
 /* 164 */ "insert_cmd ::= INSERT orconf",
 /* 165 */ "insert_cmd ::= REPLACE",
 /* 166 */ "itemlist ::= itemlist COMMA expr",
 /* 167 */ "itemlist ::= expr",
 /* 168 */ "inscollist_opt ::=",
 /* 169 */ "inscollist_opt ::= LP inscollist RP",
 /* 170 */ "inscollist ::= inscollist COMMA nm",
 /* 171 */ "inscollist ::= nm",
 /* 172 */ "expr ::= LP expr RP",
 /* 173 */ "expr ::= NULL",
 /* 174 */ "expr ::= ID",
 /* 175 */ "expr ::= JOIN_KW",
 /* 176 */ "expr ::= nm DOT nm",
 /* 177 */ "expr ::= nm DOT nm DOT nm",
 /* 178 */ "expr ::= INTEGER",
 /* 179 */ "expr ::= FLOAT",
 /* 180 */ "expr ::= STRING",
 /* 181 */ "expr ::= VARIABLE",
 /* 182 */ "expr ::= ID LP exprlist RP",
 /* 183 */ "expr ::= ID LP STAR RP",
 /* 184 */ "expr ::= expr AND expr",
 /* 185 */ "expr ::= expr OR expr",
 /* 186 */ "expr ::= expr LT expr",
 /* 187 */ "expr ::= expr GT expr",
 /* 188 */ "expr ::= expr LE expr",
 /* 189 */ "expr ::= expr GE expr",
 /* 190 */ "expr ::= expr NE expr",
 /* 191 */ "expr ::= expr EQ expr",
 /* 192 */ "expr ::= expr BITAND expr",
 /* 193 */ "expr ::= expr BITOR expr",
 /* 194 */ "expr ::= expr LSHIFT expr",
 /* 195 */ "expr ::= expr RSHIFT expr",
 /* 196 */ "expr ::= expr likeop expr",
 /* 197 */ "expr ::= expr NOT likeop expr",
 /* 198 */ "likeop ::= LIKE",
 /* 199 */ "likeop ::= GLOB",
 /* 200 */ "expr ::= expr PLUS expr",
 /* 201 */ "expr ::= expr MINUS expr",
 /* 202 */ "expr ::= expr STAR expr",
 /* 203 */ "expr ::= expr SLASH expr",
 /* 204 */ "expr ::= expr REM expr",
 /* 205 */ "expr ::= expr CONCAT expr",
 /* 206 */ "expr ::= expr ISNULL",
 /* 207 */ "expr ::= expr IS NULL",
 /* 208 */ "expr ::= expr NOTNULL",
 /* 209 */ "expr ::= expr NOT NULL",
 /* 210 */ "expr ::= expr IS NOT NULL",
 /* 211 */ "expr ::= NOT expr",
 /* 212 */ "expr ::= BITNOT expr",
 /* 213 */ "expr ::= MINUS expr",
 /* 214 */ "expr ::= PLUS expr",
 /* 215 */ "expr ::= LP select RP",
 /* 216 */ "expr ::= expr BETWEEN expr AND expr",
 /* 217 */ "expr ::= expr NOT BETWEEN expr AND expr",
 /* 218 */ "expr ::= expr IN LP exprlist RP",
 /* 219 */ "expr ::= expr IN LP select RP",
 /* 220 */ "expr ::= expr NOT IN LP exprlist RP",
 /* 221 */ "expr ::= expr NOT IN LP select RP",
 /* 222 */ "expr ::= expr IN nm dbnm",
 /* 223 */ "expr ::= expr NOT IN nm dbnm",
 /* 224 */ "expr ::= CASE case_operand case_exprlist case_else END",
 /* 225 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
 /* 226 */ "case_exprlist ::= WHEN expr THEN expr",
 /* 227 */ "case_else ::= ELSE expr",
 /* 228 */ "case_else ::=",
 /* 229 */ "case_operand ::= expr",
 /* 230 */ "case_operand ::=",
 /* 231 */ "exprlist ::= exprlist COMMA expritem",
 /* 232 */ "exprlist ::= expritem",
 /* 233 */ "expritem ::= expr",
 /* 234 */ "expritem ::=",
 /* 235 */ "cmd ::= CREATE uniqueflag INDEX nm ON nm dbnm LP idxlist RP onconf",
 /* 236 */ "uniqueflag ::= UNIQUE",
 /* 237 */ "uniqueflag ::=",
 /* 238 */ "idxlist_opt ::=",
 /* 239 */ "idxlist_opt ::= LP idxlist RP",
 /* 240 */ "idxlist ::= idxlist COMMA idxitem",
 /* 241 */ "idxlist ::= idxitem",
 /* 242 */ "idxitem ::= nm sortorder",
 /* 243 */ "cmd ::= DROP INDEX nm dbnm",
 /* 244 */ "cmd ::= COPY orconf nm dbnm FROM nm USING DELIMITERS STRING",
 /* 245 */ "cmd ::= COPY orconf nm dbnm FROM nm",
 /* 246 */ "cmd ::= VACUUM",
 /* 247 */ "cmd ::= VACUUM nm",
 /* 248 */ "cmd ::= PRAGMA ids EQ nm",
 /* 249 */ "cmd ::= PRAGMA ids EQ ON",
 /* 250 */ "cmd ::= PRAGMA ids EQ plus_num",
 /* 251 */ "cmd ::= PRAGMA ids EQ minus_num",
 /* 252 */ "cmd ::= PRAGMA ids LP nm RP",
 /* 253 */ "cmd ::= PRAGMA ids",
 /* 254 */ "plus_num ::= plus_opt number",
 /* 255 */ "minus_num ::= MINUS number",
 /* 256 */ "number ::= INTEGER",
 /* 257 */ "number ::= FLOAT",
 /* 258 */ "plus_opt ::= PLUS",
 /* 259 */ "plus_opt ::=",
 /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
 /* 261 */ "trigger_decl ::= temp TRIGGER nm trigger_time trigger_event ON nm dbnm foreach_clause when_clause",
 /* 262 */ "trigger_time ::= BEFORE",
 /* 263 */ "trigger_time ::= AFTER",
 /* 264 */ "trigger_time ::= INSTEAD OF",
 /* 265 */ "trigger_time ::=",
 /* 266 */ "trigger_event ::= DELETE",
 /* 267 */ "trigger_event ::= INSERT",
 /* 268 */ "trigger_event ::= UPDATE",
 /* 269 */ "trigger_event ::= UPDATE OF inscollist",
 /* 270 */ "foreach_clause ::=",
 /* 271 */ "foreach_clause ::= FOR EACH ROW",
 /* 272 */ "foreach_clause ::= FOR EACH STATEMENT",
 /* 273 */ "when_clause ::=",
 /* 274 */ "when_clause ::= WHEN expr",
 /* 275 */ "trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list",
 /* 276 */ "trigger_cmd_list ::=",
 /* 277 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
 /* 278 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
 /* 279 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
 /* 280 */ "trigger_cmd ::= DELETE FROM nm where_opt",
 /* 281 */ "trigger_cmd ::= select",
 /* 282 */ "expr ::= RAISE LP IGNORE RP",
 /* 283 */ "expr ::= RAISE LP ROLLBACK COMMA nm RP",
 /* 284 */ "expr ::= RAISE LP ABORT COMMA nm RP",
 /* 285 */ "expr ::= RAISE LP FAIL COMMA nm RP",
 /* 286 */ "cmd ::= DROP TRIGGER nm dbnm",
 /* 287 */ "cmd ::= ATTACH database_kw_opt ids AS nm key_opt",
 /* 288 */ "key_opt ::= USING ids",
 /* 289 */ "key_opt ::=",
 /* 290 */ "database_kw_opt ::= DATABASE",
 /* 291 */ "database_kw_opt ::=",
 /* 292 */ "cmd ::= DETACH database_kw_opt nm",
};
parse.c791
CONST CHAR sqliteParserTokenName(int tokenType)
const char *sqliteParserTokenName(int tokenType){
#ifndef NDEBUG
  if( tokenType>0 && tokenType<(sizeof(yyTokenName)/sizeof(yyTokenName[0])) ){
    return yyTokenName[tokenType];
  }else{
    return "Unknown";
  }
#else
  return "";
#endif
}
parse.c1178
VOID *SQLITEPARSERALLOC(VOID *(*MALLOCPROC(size_t))
void *sqliteParserAlloc(void *(*mallocProc)(size_t)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
  if( pParser ){
    pParser->yyidx = -1;
  }
  return pParser;
}
parse.c1194
STATIC VOIDyy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor)
static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
  switch( yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are not used
    ** inside the C code.
    */
    case 146:
#line 286 "parse.y"
{sqliteSelectDelete((yypminor->yy179));}
#line 1235 "parse.c"
      break;
    case 158:
#line 533 "parse.y"
{sqliteExprDelete((yypminor->yy242));}
#line 1240 "parse.c"
      break;
    case 159:
#line 746 "parse.y"
{sqliteIdListDelete((yypminor->yy320));}
#line 1245 "parse.c"
      break;
    case 167:
#line 744 "parse.y"
{sqliteIdListDelete((yypminor->yy320));}
#line 1250 "parse.c"
      break;
    case 171:
#line 288 "parse.y"
{sqliteSelectDelete((yypminor->yy179));}
#line 1255 "parse.c"
      break;
    case 174:
#line 322 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1260 "parse.c"
      break;
    case 175:
#line 353 "parse.y"
{sqliteSrcListDelete((yypminor->yy307));}
#line 1265 "parse.c"
      break;
    case 176:
#line 483 "parse.y"
{sqliteExprDelete((yypminor->yy242));}
#line 1270 "parse.c"
      break;
    case 177:
#line 459 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1275 "parse.c"
      break;
    case 178:
#line 464 "parse.y"
{sqliteExprDelete((yypminor->yy242));}
#line 1280 "parse.c"
      break;
    case 179:
#line 431 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1285 "parse.c"
      break;
    case 181:
#line 324 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1290 "parse.c"
      break;
    case 183:
#line 349 "parse.y"
{sqliteSrcListDelete((yypminor->yy307));}
#line 1295 "parse.c"
      break;
    case 184:
#line 351 "parse.y"
{sqliteSrcListDelete((yypminor->yy307));}
#line 1300 "parse.c"
      break;
    case 187:
#line 420 "parse.y"
{sqliteExprDelete((yypminor->yy242));}
#line 1305 "parse.c"
      break;
    case 188:
#line 425 "parse.y"
{sqliteIdListDelete((yypminor->yy320));}
#line 1310 "parse.c"
      break;
    case 189:
#line 400 "parse.y"
{sqliteSelectDelete((yypminor->yy179));}
#line 1315 "parse.c"
      break;
    case 191:
#line 433 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1320 "parse.c"
      break;
    case 192:
#line 435 "parse.y"
{sqliteExprDelete((yypminor->yy242));}
#line 1325 "parse.c"
      break;
    case 194:
#line 719 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1330 "parse.c"
      break;
    case 195:
#line 489 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1335 "parse.c"
      break;
    case 197:
#line 520 "parse.y"
{sqliteIdListDelete((yypminor->yy320));}
#line 1340 "parse.c"
      break;
    case 198:
#line 514 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1345 "parse.c"
      break;
    case 199:
#line 522 "parse.y"
{sqliteIdListDelete((yypminor->yy320));}
#line 1350 "parse.c"
      break;
    case 202:
#line 702 "parse.y"
{sqliteExprListDelete((yypminor->yy322));}
#line 1355 "parse.c"
      break;
    case 204:
#line 721 "parse.y"
{sqliteExprDelete((yypminor->yy242));}
#line 1360 "parse.c"
      break;
    case 212:
#line 828 "parse.y"
{sqliteDeleteTriggerStep((yypminor->yy19));}
#line 1365 "parse.c"
      break;
    case 214:
#line 812 "parse.y"
{sqliteIdListDelete((yypminor->yy290).b);}
#line 1370 "parse.c"
      break;
    case 217:
#line 836 "parse.y"
{sqliteDeleteTriggerStep((yypminor->yy19));}
#line 1375 "parse.c"
      break;
    default:  break;   /* If no destructor action specified: do nothing */
  }
}
parse.c1215
STATIC INTyy_pop_parser_stack(yyParser *pParser)
static int yy_pop_parser_stack(yyParser *pParser){
  YYCODETYPE yymajor;
  yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];

  if( pParser->yyidx<0 ) return 0;
#ifndef NDEBUG
  if( yyTraceFILE && pParser->yyidx>=0 ){
    fprintf(yyTraceFILE,"%sPopping %s\n",
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif
  yymajor = yytos->major;
  yy_destructor( yymajor, &yytos->minor);
  pParser->yyidx--;
  return yymajor;
}
parse.c1381
VOID SQLITEPARSERFREE( VOID *P, VOID (*FREEPROC(void*) )
void sqliteParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  yyParser *pParser = (yyParser*)p;
  if( pParser==0 ) return;
  while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
  (*freeProc)((void*)pParser);
}
parse.c1407
STATIC INTyy_find_shift_action( yyParser *pParser, int iLookAhead )
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  int iLookAhead            /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 
  /* if( pParser->yyidx<0 ) return YY_NO_ACTION;  */
  i = yy_shift_ofst[stateno];
  if( i==YY_SHIFT_USE_DFLT ){
    return yy_default[stateno];
  }
  if( iLookAhead==YYNOCODE ){
    return YY_NO_ACTION;
  }
  i += iLookAhead;
  if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
#ifdef YYFALLBACK
    int iFallback;            /* Fallback token */
    if( iLookAhead %s\n",
           yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
      }
#endif
      return yy_find_shift_action(pParser, iFallback);
    }
#endif
    return yy_default[stateno];
  }else{
    return yy_action[i];
  }
}
parse.c1429
STATIC INTyy_find_reduce_action( yyParser *pParser, int iLookAhead )
static int yy_find_reduce_action(
  yyParser *pParser,        /* The parser */
  int iLookAhead            /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 
  i = yy_reduce_ofst[stateno];
  if( i==YY_REDUCE_USE_DFLT ){
    return yy_default[stateno];
  }
  if( iLookAhead==YYNOCODE ){
    return YY_NO_ACTION;
  }
  i += iLookAhead;
  if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
    return yy_default[stateno];
  }else{
    return yy_action[i];
  }
}
parse.c1473
STATIC VOIDyy_shift( yyParser *yypParser, int yyNewState, int yyMajor, YYMINORTYPE *yypMinor )
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer ot the minor token to shift in */
){
  yyStackEntry *yytos;
  yypParser->yyidx++;
  if( yypParser->yyidx>=YYSTACKDEPTH ){
     sqliteParserARG_FETCH;
     yypParser->yyidx--;
#ifndef NDEBUG
     if( yyTraceFILE ){
       fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
     }
#endif
     while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
     /* Here code is inserted which will execute if the parser
     ** stack every overflows */
     sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument var */
     return;
  }
  yytos = &yypParser->yystack[yypParser->yyidx];
  yytos->stateno = yyNewState;
  yytos->major = yyMajor;
  yytos->minor = *yypMinor;
#ifndef NDEBUG
  if( yyTraceFILE && yypParser->yyidx>0 ){
    int i;
    fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
    fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
    for(i=1; i<=yypParser->yyidx; i++)
      fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
    fprintf(yyTraceFILE,"\n");
  }
#endif
}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static struct {
  YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
  unsigned char nrhs;     /* Number of right-hand side symbols in the rule */
} yyRuleInfo[] = {
  { 132, 1 },
  { 133, 2 },
  { 133, 1 },
  { 134, 3 },
  { 134, 1 },
  { 136, 1 },
  { 135, 1 },
  { 135, 0 },
  { 137, 3 },
  { 138, 0 },
  { 138, 1 },
  { 138, 2 },
  { 137, 2 },
  { 137, 2 },
  { 137, 2 },
  { 137, 2 },
  { 141, 4 },
  { 143, 1 },
  { 143, 0 },
  { 142, 4 },
  { 142, 2 },
  { 144, 3 },
  { 144, 1 },
  { 147, 3 },
  { 148, 1 },
  { 151, 1 },
  { 152, 1 },
  { 152, 1 },
  { 140, 1 },
  { 140, 1 },
  { 140, 1 },
  { 149, 0 },
  { 149, 1 },
  { 149, 4 },
  { 149, 6 },
  { 153, 1 },
  { 153, 2 },
  { 154, 1 },
  { 154, 2 },
  { 154, 2 },
  { 150, 2 },
  { 150, 0 },
  { 155, 3 },
  { 155, 1 },
  { 155, 2 },
  { 155, 2 },
  { 155, 2 },
  { 155, 3 },
  { 155, 3 },
  { 155, 2 },
  { 155, 3 },
  { 155, 3 },
  { 155, 2 },
  { 156, 2 },
  { 156, 3 },
  { 156, 4 },
  { 156, 2 },
  { 156, 5 },
  { 156, 4 },
  { 156, 1 },
  { 156, 2 },
  { 160, 0 },
  { 160, 2 },
  { 162, 2 },
  { 162, 3 },
  { 162, 3 },
  { 162, 3 },
  { 163, 2 },
  { 163, 2 },
  { 163, 1 },
  { 163, 1 },
  { 161, 3 },
  { 161, 2 },
  { 164, 0 },
  { 164, 2 },
  { 164, 2 },
  { 145, 0 },
  { 145, 2 },
  { 165, 3 },
  { 165, 2 },
  { 165, 1 },
  { 166, 2 },
  { 166, 6 },
  { 166, 5 },
  { 166, 3 },
  { 166, 10 },
  { 168, 0 },
  { 168, 1 },
  { 139, 0 },
  { 139, 3 },
  { 169, 0 },
  { 169, 2 },
  { 170, 1 },
  { 170, 1 },
  { 170, 1 },
  { 170, 1 },
  { 170, 1 },
  { 137, 3 },
  { 137, 6 },
  { 137, 3 },
  { 137, 1 },
  { 146, 1 },
  { 146, 3 },
  { 172, 1 },
  { 172, 2 },
  { 172, 1 },
  { 172, 1 },
  { 171, 9 },
  { 173, 1 },
  { 173, 1 },
  { 173, 0 },
  { 181, 2 },
  { 181, 0 },
  { 174, 3 },
  { 174, 2 },
  { 174, 4 },
  { 182, 2 },
  { 182, 1 },
  { 182, 0 },
  { 175, 0 },
  { 175, 2 },
  { 184, 2 },
  { 184, 0 },
  { 183, 6 },
  { 183, 7 },
  { 189, 1 },
  { 189, 1 },
  { 186, 0 },
  { 186, 2 },
  { 185, 1 },
  { 185, 1 },
  { 185, 2 },
  { 185, 3 },
  { 185, 4 },
  { 187, 2 },
  { 187, 0 },
  { 188, 4 },
  { 188, 0 },
  { 179, 0 },
  { 179, 3 },
  { 191, 5 },
  { 191, 3 },
  { 192, 1 },
  { 157, 1 },
  { 157, 1 },
  { 157, 0 },
  { 193, 0 },
  { 193, 2 },
  { 177, 0 },
  { 177, 3 },
  { 178, 0 },
  { 178, 2 },
  { 180, 0 },
  { 180, 2 },
  { 180, 4 },
  { 180, 4 },
  { 137, 5 },
  { 176, 0 },
  { 176, 2 },
  { 137, 7 },
  { 195, 5 },
  { 195, 3 },
  { 137, 9 },
  { 137, 6 },
  { 196, 2 },
  { 196, 1 },
  { 198, 3 },
  { 198, 1 },
  { 197, 0 },
  { 197, 3 },
  { 199, 3 },
  { 199, 1 },
  { 158, 3 },
  { 158, 1 },
  { 158, 1 },
  { 158, 1 },
  { 158, 3 },
  { 158, 5 },
  { 158, 1 },
  { 158, 1 },
  { 158, 1 },
  { 158, 1 },
  { 158, 4 },
  { 158, 4 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 4 },
  { 200, 1 },
  { 200, 1 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 3 },
  { 158, 2 },
  { 158, 3 },
  { 158, 2 },
  { 158, 3 },
  { 158, 4 },
  { 158, 2 },
  { 158, 2 },
  { 158, 2 },
  { 158, 2 },
  { 158, 3 },
  { 158, 5 },
  { 158, 6 },
  { 158, 5 },
  { 158, 5 },
  { 158, 6 },
  { 158, 6 },
  { 158, 4 },
  { 158, 5 },
  { 158, 5 },
  { 202, 5 },
  { 202, 4 },
  { 203, 2 },
  { 203, 0 },
  { 201, 1 },
  { 201, 0 },
  { 194, 3 },
  { 194, 1 },
  { 204, 1 },
  { 204, 0 },
  { 137, 11 },
  { 205, 1 },
  { 205, 0 },
  { 159, 0 },
  { 159, 3 },
  { 167, 3 },
  { 167, 1 },
  { 206, 2 },
  { 137, 4 },
  { 137, 9 },
  { 137, 6 },
  { 137, 1 },
  { 137, 2 },
  { 137, 4 },
  { 137, 4 },
  { 137, 4 },
  { 137, 4 },
  { 137, 5 },
  { 137, 2 },
  { 207, 2 },
  { 208, 2 },
  { 210, 1 },
  { 210, 1 },
  { 209, 1 },
  { 209, 0 },
  { 137, 5 },
  { 211, 10 },
  { 213, 1 },
  { 213, 1 },
  { 213, 2 },
  { 213, 0 },
  { 214, 1 },
  { 214, 1 },
  { 214, 1 },
  { 214, 3 },
  { 215, 0 },
  { 215, 3 },
  { 215, 3 },
  { 216, 0 },
  { 216, 2 },
  { 212, 3 },
  { 212, 0 },
  { 217, 6 },
  { 217, 8 },
  { 217, 5 },
  { 217, 4 },
  { 217, 1 },
  { 158, 4 },
  { 158, 6 },
  { 158, 6 },
  { 158, 6 },
  { 137, 4 },
  { 137, 6 },
  { 219, 2 },
  { 219, 0 },
  { 218, 1 },
  { 218, 0 },
  { 137, 3 },
};

static void yy_accept(yyParser*);  /* Forward Declaration */
parse.c1503
STATIC VOIDyy_reduce( yyParser *yypParser, int yyruleno )
static void yy_reduce(
  yyParser *yypParser,         /* The parser */
  int yyruleno                 /* Number of the rule by which to reduce */
){
  int yygoto;                     /* The next state */
  int yyact;                      /* The next action */
  YYMINORTYPE yygotominor;        /* The LHS of the rule reduced */
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  sqliteParserARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno 
  **     { ... }           // User supplied code
  **  #line  
  **     break;
  */
      case 0:
        /* No destructor defined for cmdlist */
        break;
      case 1:
        /* No destructor defined for cmdlist */
        /* No destructor defined for ecmd */
        break;
      case 2:
        /* No destructor defined for ecmd */
        break;
      case 3:
        /* No destructor defined for explain */
        /* No destructor defined for cmdx */
        /* No destructor defined for SEMI */
        break;
      case 4:
        /* No destructor defined for SEMI */
        break;
      case 5:
#line 72 "parse.y"
{ sqliteExec(pParse); }
#line 1901 "parse.c"
        /* No destructor defined for cmd */
        break;
      case 6:
#line 73 "parse.y"
{ sqliteBeginParse(pParse, 1); }
#line 1907 "parse.c"
        /* No destructor defined for EXPLAIN */
        break;
      case 7:
#line 74 "parse.y"
{ sqliteBeginParse(pParse, 0); }
#line 1913 "parse.c"
        break;
      case 8:
#line 79 "parse.y"
{sqliteBeginTransaction(pParse,yymsp[0].minor.yy372);}
#line 1918 "parse.c"
        /* No destructor defined for BEGIN */
        /* No destructor defined for trans_opt */
        break;
      case 9:
        break;
      case 10:
        /* No destructor defined for TRANSACTION */
        break;
      case 11:
        /* No destructor defined for TRANSACTION */
        /* No destructor defined for nm */
        break;
      case 12:
#line 83 "parse.y"
{sqliteCommitTransaction(pParse);}
#line 1934 "parse.c"
        /* No destructor defined for COMMIT */
        /* No destructor defined for trans_opt */
        break;
      case 13:
#line 84 "parse.y"
{sqliteCommitTransaction(pParse);}
#line 1941 "parse.c"
        /* No destructor defined for END */
        /* No destructor defined for trans_opt */
        break;
      case 14:
#line 85 "parse.y"
{sqliteRollbackTransaction(pParse);}
#line 1948 "parse.c"
        /* No destructor defined for ROLLBACK */
        /* No destructor defined for trans_opt */
        break;
      case 15:
        /* No destructor defined for create_table */
        /* No destructor defined for create_table_args */
        break;
      case 16:
#line 90 "parse.y"
{
   sqliteStartTable(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy298,yymsp[-2].minor.yy372,0);
}
#line 1961 "parse.c"
        /* No destructor defined for TABLE */
        break;
      case 17:
#line 94 "parse.y"
{yygotominor.yy372 = 1;}
#line 1967 "parse.c"
        /* No destructor defined for TEMP */
        break;
      case 18:
#line 95 "parse.y"
{yygotominor.yy372 = 0;}
#line 1973 "parse.c"
        break;
      case 19:
#line 96 "parse.y"
{
  sqliteEndTable(pParse,&yymsp[0].minor.yy0,0);
}
#line 1980 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for columnlist */
        /* No destructor defined for conslist_opt */
        break;
      case 20:
#line 99 "parse.y"
{
  sqliteEndTable(pParse,0,yymsp[0].minor.yy179);
  sqliteSelectDelete(yymsp[0].minor.yy179);
}
#line 1991 "parse.c"
        /* No destructor defined for AS */
        break;
      case 21:
        /* No destructor defined for columnlist */
        /* No destructor defined for COMMA */
        /* No destructor defined for column */
        break;
      case 22:
        /* No destructor defined for column */
        break;
      case 23:
        /* No destructor defined for columnid */
        /* No destructor defined for type */
        /* No destructor defined for carglist */
        break;
      case 24:
#line 111 "parse.y"
{sqliteAddColumn(pParse,&yymsp[0].minor.yy298);}
#line 2010 "parse.c"
        break;
      case 25:
#line 117 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 2015 "parse.c"
        break;
      case 26:
#line 149 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 2020 "parse.c"
        break;
      case 27:
#line 150 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 2025 "parse.c"
        break;
      case 28:
#line 155 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 2030 "parse.c"
        break;
      case 29:
#line 156 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 2035 "parse.c"
        break;
      case 30:
#line 157 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 2040 "parse.c"
        break;
      case 31:
        break;
      case 32:
#line 160 "parse.y"
{sqliteAddColumnType(pParse,&yymsp[0].minor.yy298,&yymsp[0].minor.yy298);}
#line 2047 "parse.c"
        break;
      case 33:
#line 161 "parse.y"
{sqliteAddColumnType(pParse,&yymsp[-3].minor.yy298,&yymsp[0].minor.yy0);}
#line 2052 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for signed */
        break;
      case 34:
#line 163 "parse.y"
{sqliteAddColumnType(pParse,&yymsp[-5].minor.yy298,&yymsp[0].minor.yy0);}
#line 2059 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for signed */
        /* No destructor defined for COMMA */
        /* No destructor defined for signed */
        break;
      case 35:
#line 165 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy298;}
#line 2068 "parse.c"
        break;
      case 36:
#line 166 "parse.y"
{yygotominor.yy298 = yymsp[-1].minor.yy298;}
#line 2073 "parse.c"
        /* No destructor defined for ids */
        break;
      case 37:
#line 168 "parse.y"
{ yygotominor.yy372 = atoi(yymsp[0].minor.yy0.z); }
#line 2079 "parse.c"
        break;
      case 38:
#line 169 "parse.y"
{ yygotominor.yy372 = atoi(yymsp[0].minor.yy0.z); }
#line 2084 "parse.c"
        /* No destructor defined for PLUS */
        break;
      case 39:
#line 170 "parse.y"
{ yygotominor.yy372 = -atoi(yymsp[0].minor.yy0.z); }
#line 2090 "parse.c"
        /* No destructor defined for MINUS */
        break;
      case 40:
        /* No destructor defined for carglist */
        /* No destructor defined for carg */
        break;
      case 41:
        break;
      case 42:
        /* No destructor defined for CONSTRAINT */
        /* No destructor defined for nm */
        /* No destructor defined for ccons */
        break;
      case 43:
        /* No destructor defined for ccons */
        break;
      case 44:
#line 175 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
#line 2110 "parse.c"
        /* No destructor defined for DEFAULT */
        break;
      case 45:
#line 176 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
#line 2116 "parse.c"
        /* No destructor defined for DEFAULT */
        break;
      case 46:
#line 177 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
#line 2122 "parse.c"
        /* No destructor defined for DEFAULT */
        break;
      case 47:
#line 178 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
#line 2128 "parse.c"
        /* No destructor defined for DEFAULT */
        /* No destructor defined for PLUS */
        break;
      case 48:
#line 179 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
#line 2135 "parse.c"
        /* No destructor defined for DEFAULT */
        /* No destructor defined for MINUS */
        break;
      case 49:
#line 180 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
#line 2142 "parse.c"
        /* No destructor defined for DEFAULT */
        break;
      case 50:
#line 181 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
#line 2148 "parse.c"
        /* No destructor defined for DEFAULT */
        /* No destructor defined for PLUS */
        break;
      case 51:
#line 182 "parse.y"
{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
#line 2155 "parse.c"
        /* No destructor defined for DEFAULT */
        /* No destructor defined for MINUS */
        break;
      case 52:
        /* No destructor defined for DEFAULT */
        /* No destructor defined for NULL */
        break;
      case 53:
        /* No destructor defined for NULL */
        /* No destructor defined for onconf */
        break;
      case 54:
#line 189 "parse.y"
{sqliteAddNotNull(pParse, yymsp[0].minor.yy372);}
#line 2170 "parse.c"
        /* No destructor defined for NOT */
        /* No destructor defined for NULL */
        break;
      case 55:
#line 190 "parse.y"
{sqliteAddPrimaryKey(pParse,0,yymsp[0].minor.yy372);}
#line 2177 "parse.c"
        /* No destructor defined for PRIMARY */
        /* No destructor defined for KEY */
        /* No destructor defined for sortorder */
        break;
      case 56:
#line 191 "parse.y"
{sqliteCreateIndex(pParse,0,0,0,yymsp[0].minor.yy372,0,0);}
#line 2185 "parse.c"
        /* No destructor defined for UNIQUE */
        break;
      case 57:
        /* No destructor defined for CHECK */
        /* No destructor defined for LP */
  yy_destructor(158,&yymsp[-2].minor);
        /* No destructor defined for RP */
        /* No destructor defined for onconf */
        break;
      case 58:
#line 194 "parse.y"
{sqliteCreateForeignKey(pParse,0,&yymsp[-2].minor.yy298,yymsp[-1].minor.yy320,yymsp[0].minor.yy372);}
#line 2198 "parse.c"
        /* No destructor defined for REFERENCES */
        break;
      case 59:
#line 195 "parse.y"
{sqliteDeferForeignKey(pParse,yymsp[0].minor.yy372);}
#line 2204 "parse.c"
        break;
      case 60:
#line 196 "parse.y"
{
   sqliteAddCollateType(pParse, sqliteCollateType(yymsp[0].minor.yy298.z, yymsp[0].minor.yy298.n));
}
#line 2211 "parse.c"
        /* No destructor defined for COLLATE */
        break;
      case 61:
#line 206 "parse.y"
{ yygotominor.yy372 = OE_Restrict * 0x010101; }
#line 2217 "parse.c"
        break;
      case 62:
#line 207 "parse.y"
{ yygotominor.yy372 = (yymsp[-1].minor.yy372 & yymsp[0].minor.yy407.mask) | yymsp[0].minor.yy407.value; }
#line 2222 "parse.c"
        break;
      case 63:
#line 209 "parse.y"
{ yygotominor.yy407.value = 0;     yygotominor.yy407.mask = 0x000000; }
#line 2227 "parse.c"
        /* No destructor defined for MATCH */
        /* No destructor defined for nm */
        break;
      case 64:
#line 210 "parse.y"
{ yygotominor.yy407.value = yymsp[0].minor.yy372;     yygotominor.yy407.mask = 0x0000ff; }
#line 2234 "parse.c"
        /* No destructor defined for ON */
        /* No destructor defined for DELETE */
        break;
      case 65:
#line 211 "parse.y"
{ yygotominor.yy407.value = yymsp[0].minor.yy372<<8;  yygotominor.yy407.mask = 0x00ff00; }
#line 2241 "parse.c"
        /* No destructor defined for ON */
        /* No destructor defined for UPDATE */
        break;
      case 66:
#line 212 "parse.y"
{ yygotominor.yy407.value = yymsp[0].minor.yy372<<16; yygotominor.yy407.mask = 0xff0000; }
#line 2248 "parse.c"
        /* No destructor defined for ON */
        /* No destructor defined for INSERT */
        break;
      case 67:
#line 214 "parse.y"
{ yygotominor.yy372 = OE_SetNull; }
#line 2255 "parse.c"
        /* No destructor defined for SET */
        /* No destructor defined for NULL */
        break;
      case 68:
#line 215 "parse.y"
{ yygotominor.yy372 = OE_SetDflt; }
#line 2262 "parse.c"
        /* No destructor defined for SET */
        /* No destructor defined for DEFAULT */
        break;
      case 69:
#line 216 "parse.y"
{ yygotominor.yy372 = OE_Cascade; }
#line 2269 "parse.c"
        /* No destructor defined for CASCADE */
        break;
      case 70:
#line 217 "parse.y"
{ yygotominor.yy372 = OE_Restrict; }
#line 2275 "parse.c"
        /* No destructor defined for RESTRICT */
        break;
      case 71:
#line 219 "parse.y"
{yygotominor.yy372 = yymsp[0].minor.yy372;}
#line 2281 "parse.c"
        /* No destructor defined for NOT */
        /* No destructor defined for DEFERRABLE */
        break;
      case 72:
#line 220 "parse.y"
{yygotominor.yy372 = yymsp[0].minor.yy372;}
#line 2288 "parse.c"
        /* No destructor defined for DEFERRABLE */
        break;
      case 73:
#line 222 "parse.y"
{yygotominor.yy372 = 0;}
#line 2294 "parse.c"
        break;
      case 74:
#line 223 "parse.y"
{yygotominor.yy372 = 1;}
#line 2299 "parse.c"
        /* No destructor defined for INITIALLY */
        /* No destructor defined for DEFERRED */
        break;
      case 75:
#line 224 "parse.y"
{yygotominor.yy372 = 0;}
#line 2306 "parse.c"
        /* No destructor defined for INITIALLY */
        /* No destructor defined for IMMEDIATE */
        break;
      case 76:
        break;
      case 77:
        /* No destructor defined for COMMA */
        /* No destructor defined for conslist */
        break;
      case 78:
        /* No destructor defined for conslist */
        /* No destructor defined for COMMA */
        /* No destructor defined for tcons */
        break;
      case 79:
        /* No destructor defined for conslist */
        /* No destructor defined for tcons */
        break;
      case 80:
        /* No destructor defined for tcons */
        break;
      case 81:
        /* No destructor defined for CONSTRAINT */
        /* No destructor defined for nm */
        break;
      case 82:
#line 236 "parse.y"
{sqliteAddPrimaryKey(pParse,yymsp[-2].minor.yy320,yymsp[0].minor.yy372);}
#line 2335 "parse.c"
        /* No destructor defined for PRIMARY */
        /* No destructor defined for KEY */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 83:
#line 238 "parse.y"
{sqliteCreateIndex(pParse,0,0,yymsp[-2].minor.yy320,yymsp[0].minor.yy372,0,0);}
#line 2344 "parse.c"
        /* No destructor defined for UNIQUE */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 84:
        /* No destructor defined for CHECK */
  yy_destructor(158,&yymsp[-1].minor);
        /* No destructor defined for onconf */
        break;
      case 85:
#line 241 "parse.y"
{
    sqliteCreateForeignKey(pParse, yymsp[-6].minor.yy320, &yymsp[-3].minor.yy298, yymsp[-2].minor.yy320, yymsp[-1].minor.yy372);
    sqliteDeferForeignKey(pParse, yymsp[0].minor.yy372);
}
#line 2360 "parse.c"
        /* No destructor defined for FOREIGN */
        /* No destructor defined for KEY */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        /* No destructor defined for REFERENCES */
        break;
      case 86:
#line 246 "parse.y"
{yygotominor.yy372 = 0;}
#line 2370 "parse.c"
        break;
      case 87:
#line 247 "parse.y"
{yygotominor.yy372 = yymsp[0].minor.yy372;}
#line 2375 "parse.c"
        break;
      case 88:
#line 255 "parse.y"
{ yygotominor.yy372 = OE_Default; }
#line 2380 "parse.c"
        break;
      case 89:
#line 256 "parse.y"
{ yygotominor.yy372 = yymsp[0].minor.yy372; }
#line 2385 "parse.c"
        /* No destructor defined for ON */
        /* No destructor defined for CONFLICT */
        break;
      case 90:
#line 257 "parse.y"
{ yygotominor.yy372 = OE_Default; }
#line 2392 "parse.c"
        break;
      case 91:
#line 258 "parse.y"
{ yygotominor.yy372 = yymsp[0].minor.yy372; }
#line 2397 "parse.c"
        /* No destructor defined for OR */
        break;
      case 92:
#line 259 "parse.y"
{ yygotominor.yy372 = OE_Rollback; }
#line 2403 "parse.c"
        /* No destructor defined for ROLLBACK */
        break;
      case 93:
#line 260 "parse.y"
{ yygotominor.yy372 = OE_Abort; }
#line 2409 "parse.c"
        /* No destructor defined for ABORT */
        break;
      case 94:
#line 261 "parse.y"
{ yygotominor.yy372 = OE_Fail; }
#line 2415 "parse.c"
        /* No destructor defined for FAIL */
        break;
      case 95:
#line 262 "parse.y"
{ yygotominor.yy372 = OE_Ignore; }
#line 2421 "parse.c"
        /* No destructor defined for IGNORE */
        break;
      case 96:
#line 263 "parse.y"
{ yygotominor.yy372 = OE_Replace; }
#line 2427 "parse.c"
        /* No destructor defined for REPLACE */
        break;
      case 97:
#line 267 "parse.y"
{sqliteDropTable(pParse,&yymsp[0].minor.yy298,0);}
#line 2433 "parse.c"
        /* No destructor defined for DROP */
        /* No destructor defined for TABLE */
        break;
      case 98:
#line 271 "parse.y"
{
  sqliteCreateView(pParse, &yymsp[-5].minor.yy0, &yymsp[-2].minor.yy298, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);
}
#line 2442 "parse.c"
        /* No destructor defined for VIEW */
        /* No destructor defined for AS */
        break;
      case 99:
#line 274 "parse.y"
{
  sqliteDropTable(pParse, &yymsp[0].minor.yy298, 1);
}
#line 2451 "parse.c"
        /* No destructor defined for DROP */
        /* No destructor defined for VIEW */
        break;
      case 100:
#line 280 "parse.y"
{
  sqliteSelect(pParse, yymsp[0].minor.yy179, SRT_Callback, 0, 0, 0, 0);
  sqliteSelectDelete(yymsp[0].minor.yy179);
}
#line 2461 "parse.c"
        break;
      case 101:
#line 290 "parse.y"
{yygotominor.yy179 = yymsp[0].minor.yy179;}
#line 2466 "parse.c"
        break;
      case 102:
#line 291 "parse.y"
{
  if( yymsp[0].minor.yy179 ){
    yymsp[0].minor.yy179->op = yymsp[-1].minor.yy372;
    yymsp[0].minor.yy179->pPrior = yymsp[-2].minor.yy179;
  }
  yygotominor.yy179 = yymsp[0].minor.yy179;
}
#line 2477 "parse.c"
        break;
      case 103:
#line 299 "parse.y"
{yygotominor.yy372 = TK_UNION;}
#line 2482 "parse.c"
        /* No destructor defined for UNION */
        break;
      case 104:
#line 300 "parse.y"
{yygotominor.yy372 = TK_ALL;}
#line 2488 "parse.c"
        /* No destructor defined for UNION */
        /* No destructor defined for ALL */
        break;
      case 105:
#line 301 "parse.y"
{yygotominor.yy372 = TK_INTERSECT;}
#line 2495 "parse.c"
        /* No destructor defined for INTERSECT */
        break;
      case 106:
#line 302 "parse.y"
{yygotominor.yy372 = TK_EXCEPT;}
#line 2501 "parse.c"
        /* No destructor defined for EXCEPT */
        break;
      case 107:
#line 304 "parse.y"
{
  yygotominor.yy179 = sqliteSelectNew(yymsp[-6].minor.yy322,yymsp[-5].minor.yy307,yymsp[-4].minor.yy242,yymsp[-3].minor.yy322,yymsp[-2].minor.yy242,yymsp[-1].minor.yy322,yymsp[-7].minor.yy372,yymsp[0].minor.yy124.limit,yymsp[0].minor.yy124.offset);
}
#line 2509 "parse.c"
        /* No destructor defined for SELECT */
        break;
      case 108:
#line 312 "parse.y"
{yygotominor.yy372 = 1;}
#line 2515 "parse.c"
        /* No destructor defined for DISTINCT */
        break;
      case 109:
#line 313 "parse.y"
{yygotominor.yy372 = 0;}
#line 2521 "parse.c"
        /* No destructor defined for ALL */
        break;
      case 110:
#line 314 "parse.y"
{yygotominor.yy372 = 0;}
#line 2527 "parse.c"
        break;
      case 111:
#line 325 "parse.y"
{yygotominor.yy322 = yymsp[-1].minor.yy322;}
#line 2532 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 112:
#line 326 "parse.y"
{yygotominor.yy322 = 0;}
#line 2538 "parse.c"
        break;
      case 113:
#line 327 "parse.y"
{
   yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[-1].minor.yy242,yymsp[0].minor.yy298.n?&yymsp[0].minor.yy298:0);
}
#line 2545 "parse.c"
        break;
      case 114:
#line 330 "parse.y"
{
  yygotominor.yy322 = sqliteExprListAppend(yymsp[-1].minor.yy322, sqliteExpr(TK_ALL, 0, 0, 0), 0);
}
#line 2552 "parse.c"
        /* No destructor defined for STAR */
        break;
      case 115:
#line 333 "parse.y"
{
  Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
  Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy298);
  yygotominor.yy322 = sqliteExprListAppend(yymsp[-3].minor.yy322, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
}
#line 2562 "parse.c"
        /* No destructor defined for DOT */
        /* No destructor defined for STAR */
        break;
      case 116:
#line 343 "parse.y"
{ yygotominor.yy298 = yymsp[0].minor.yy298; }
#line 2569 "parse.c"
        /* No destructor defined for AS */
        break;
      case 117:
#line 344 "parse.y"
{ yygotominor.yy298 = yymsp[0].minor.yy298; }
#line 2575 "parse.c"
        break;
      case 118:
#line 345 "parse.y"
{ yygotominor.yy298.n = 0; }
#line 2580 "parse.c"
        break;
      case 119:
#line 357 "parse.y"
{yygotominor.yy307 = sqliteMalloc(sizeof(*yygotominor.yy307));}
#line 2585 "parse.c"
        break;
      case 120:
#line 358 "parse.y"
{yygotominor.yy307 = yymsp[0].minor.yy307;}
#line 2590 "parse.c"
        /* No destructor defined for FROM */
        break;
      case 121:
#line 363 "parse.y"
{
   yygotominor.yy307 = yymsp[-1].minor.yy307;
   if( yygotominor.yy307 && yygotominor.yy307->nSrc>0 ) yygotominor.yy307->a[yygotominor.yy307->nSrc-1].jointype = yymsp[0].minor.yy372;
}
#line 2599 "parse.c"
        break;
      case 122:
#line 367 "parse.y"
{yygotominor.yy307 = 0;}
#line 2604 "parse.c"
        break;
      case 123:
#line 368 "parse.y"
{
  yygotominor.yy307 = sqliteSrcListAppend(yymsp[-5].minor.yy307,&yymsp[-4].minor.yy298,&yymsp[-3].minor.yy298);
  if( yymsp[-2].minor.yy298.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy298);
  if( yymsp[-1].minor.yy242 ){
    if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
    else { sqliteExprDelete(yymsp[-1].minor.yy242); }
  }
  if( yymsp[0].minor.yy320 ){
    if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
    else { sqliteIdListDelete(yymsp[0].minor.yy320); }
  }
}
#line 2620 "parse.c"
        break;
      case 124:
#line 381 "parse.y"
{
  yygotominor.yy307 = sqliteSrcListAppend(yymsp[-6].minor.yy307,0,0);
  yygotominor.yy307->a[yygotominor.yy307->nSrc-1].pSelect = yymsp[-4].minor.yy179;
  if( yymsp[-2].minor.yy298.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy298);
  if( yymsp[-1].minor.yy242 ){
    if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
    else { sqliteExprDelete(yymsp[-1].minor.yy242); }
  }
  if( yymsp[0].minor.yy320 ){
    if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
    else { sqliteIdListDelete(yymsp[0].minor.yy320); }
  }
}
#line 2637 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 125:
#line 401 "parse.y"
{yygotominor.yy179 = yymsp[0].minor.yy179;}
#line 2644 "parse.c"
        break;
      case 126:
#line 402 "parse.y"
{
   yygotominor.yy179 = sqliteSelectNew(0,yymsp[0].minor.yy307,0,0,0,0,0,-1,0);
}
#line 2651 "parse.c"
        break;
      case 127:
#line 407 "parse.y"
{yygotominor.yy298.z=0; yygotominor.yy298.n=0;}
#line 2656 "parse.c"
        break;
      case 128:
#line 408 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy298;}
#line 2661 "parse.c"
        /* No destructor defined for DOT */
        break;
      case 129:
#line 412 "parse.y"
{ yygotominor.yy372 = JT_INNER; }
#line 2667 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 130:
#line 413 "parse.y"
{ yygotominor.yy372 = JT_INNER; }
#line 2673 "parse.c"
        /* No destructor defined for JOIN */
        break;
      case 131:
#line 414 "parse.y"
{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
#line 2679 "parse.c"
        /* No destructor defined for JOIN */
        break;
      case 132:
#line 415 "parse.y"
{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy298,0); }
#line 2685 "parse.c"
        /* No destructor defined for JOIN */
        break;
      case 133:
#line 417 "parse.y"
{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy298,&yymsp[-1].minor.yy298); }
#line 2691 "parse.c"
        /* No destructor defined for JOIN */
        break;
      case 134:
#line 421 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 2697 "parse.c"
        /* No destructor defined for ON */
        break;
      case 135:
#line 422 "parse.y"
{yygotominor.yy242 = 0;}
#line 2703 "parse.c"
        break;
      case 136:
#line 426 "parse.y"
{yygotominor.yy320 = yymsp[-1].minor.yy320;}
#line 2708 "parse.c"
        /* No destructor defined for USING */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 137:
#line 427 "parse.y"
{yygotominor.yy320 = 0;}
#line 2716 "parse.c"
        break;
      case 138:
#line 437 "parse.y"
{yygotominor.yy322 = 0;}
#line 2721 "parse.c"
        break;
      case 139:
#line 438 "parse.y"
{yygotominor.yy322 = yymsp[0].minor.yy322;}
#line 2726 "parse.c"
        /* No destructor defined for ORDER */
        /* No destructor defined for BY */
        break;
      case 140:
#line 439 "parse.y"
{
  yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[-2].minor.yy242,0);
  if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
}
#line 2736 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 141:
#line 443 "parse.y"
{
  yygotominor.yy322 = sqliteExprListAppend(0,yymsp[-2].minor.yy242,0);
  if( yygotominor.yy322 ) yygotominor.yy322->a[0].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
}
#line 2745 "parse.c"
        break;
      case 142:
#line 447 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 2750 "parse.c"
        break;
      case 143:
#line 452 "parse.y"
{yygotominor.yy372 = SQLITE_SO_ASC;}
#line 2755 "parse.c"
        /* No destructor defined for ASC */
        break;
      case 144:
#line 453 "parse.y"
{yygotominor.yy372 = SQLITE_SO_DESC;}
#line 2761 "parse.c"
        /* No destructor defined for DESC */
        break;
      case 145:
#line 454 "parse.y"
{yygotominor.yy372 = SQLITE_SO_ASC;}
#line 2767 "parse.c"
        break;
      case 146:
#line 455 "parse.y"
{yygotominor.yy372 = SQLITE_SO_UNK;}
#line 2772 "parse.c"
        break;
      case 147:
#line 456 "parse.y"
{yygotominor.yy372 = sqliteCollateType(yymsp[0].minor.yy298.z, yymsp[0].minor.yy298.n);}
#line 2777 "parse.c"
        /* No destructor defined for COLLATE */
        break;
      case 148:
#line 460 "parse.y"
{yygotominor.yy322 = 0;}
#line 2783 "parse.c"
        break;
      case 149:
#line 461 "parse.y"
{yygotominor.yy322 = yymsp[0].minor.yy322;}
#line 2788 "parse.c"
        /* No destructor defined for GROUP */
        /* No destructor defined for BY */
        break;
      case 150:
#line 465 "parse.y"
{yygotominor.yy242 = 0;}
#line 2795 "parse.c"
        break;
      case 151:
#line 466 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 2800 "parse.c"
        /* No destructor defined for HAVING */
        break;
      case 152:
#line 469 "parse.y"
{yygotominor.yy124.limit = -1; yygotominor.yy124.offset = 0;}
#line 2806 "parse.c"
        break;
      case 153:
#line 470 "parse.y"
{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = 0;}
#line 2811 "parse.c"
        /* No destructor defined for LIMIT */
        break;
      case 154:
#line 472 "parse.y"
{yygotominor.yy124.limit = yymsp[-2].minor.yy372; yygotominor.yy124.offset = yymsp[0].minor.yy372;}
#line 2817 "parse.c"
        /* No destructor defined for LIMIT */
        /* No destructor defined for OFFSET */
        break;
      case 155:
#line 474 "parse.y"
{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = yymsp[-2].minor.yy372;}
#line 2824 "parse.c"
        /* No destructor defined for LIMIT */
        /* No destructor defined for COMMA */
        break;
      case 156:
#line 478 "parse.y"
{
   sqliteDeleteFrom(pParse, sqliteSrcListAppend(0,&yymsp[-2].minor.yy298,&yymsp[-1].minor.yy298), yymsp[0].minor.yy242);
}
#line 2833 "parse.c"
        /* No destructor defined for DELETE */
        /* No destructor defined for FROM */
        break;
      case 157:
#line 485 "parse.y"
{yygotominor.yy242 = 0;}
#line 2840 "parse.c"
        break;
      case 158:
#line 486 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 2845 "parse.c"
        /* No destructor defined for WHERE */
        break;
      case 159:
#line 494 "parse.y"
{sqliteUpdate(pParse,sqliteSrcListAppend(0,&yymsp[-4].minor.yy298,&yymsp[-3].minor.yy298),yymsp[-1].minor.yy322,yymsp[0].minor.yy242,yymsp[-5].minor.yy372);}
#line 2851 "parse.c"
        /* No destructor defined for UPDATE */
        /* No destructor defined for SET */
        break;
      case 160:
#line 497 "parse.y"
{yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[0].minor.yy242,&yymsp[-2].minor.yy298);}
#line 2858 "parse.c"
        /* No destructor defined for COMMA */
        /* No destructor defined for EQ */
        break;
      case 161:
#line 498 "parse.y"
{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,&yymsp[-2].minor.yy298);}
#line 2865 "parse.c"
        /* No destructor defined for EQ */
        break;
      case 162:
#line 504 "parse.y"
{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-6].minor.yy298,&yymsp[-5].minor.yy298), yymsp[-1].minor.yy322, 0, yymsp[-4].minor.yy320, yymsp[-8].minor.yy372);}
#line 2871 "parse.c"
        /* No destructor defined for INTO */
        /* No destructor defined for VALUES */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 163:
#line 506 "parse.y"
{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-3].minor.yy298,&yymsp[-2].minor.yy298), 0, yymsp[0].minor.yy179, yymsp[-1].minor.yy320, yymsp[-5].minor.yy372);}
#line 2880 "parse.c"
        /* No destructor defined for INTO */
        break;
      case 164:
#line 509 "parse.y"
{yygotominor.yy372 = yymsp[0].minor.yy372;}
#line 2886 "parse.c"
        /* No destructor defined for INSERT */
        break;
      case 165:
#line 510 "parse.y"
{yygotominor.yy372 = OE_Replace;}
#line 2892 "parse.c"
        /* No destructor defined for REPLACE */
        break;
      case 166:
#line 516 "parse.y"
{yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[0].minor.yy242,0);}
#line 2898 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 167:
#line 517 "parse.y"
{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,0);}
#line 2904 "parse.c"
        break;
      case 168:
#line 524 "parse.y"
{yygotominor.yy320 = 0;}
#line 2909 "parse.c"
        break;
      case 169:
#line 525 "parse.y"
{yygotominor.yy320 = yymsp[-1].minor.yy320;}
#line 2914 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 170:
#line 526 "parse.y"
{yygotominor.yy320 = sqliteIdListAppend(yymsp[-2].minor.yy320,&yymsp[0].minor.yy298);}
#line 2921 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 171:
#line 527 "parse.y"
{yygotominor.yy320 = sqliteIdListAppend(0,&yymsp[0].minor.yy298);}
#line 2927 "parse.c"
        break;
      case 172:
#line 535 "parse.y"
{yygotominor.yy242 = yymsp[-1].minor.yy242; sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
#line 2932 "parse.c"
        break;
      case 173:
#line 536 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_NULL, 0, 0, &yymsp[0].minor.yy0);}
#line 2937 "parse.c"
        break;
      case 174:
#line 537 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
#line 2942 "parse.c"
        break;
      case 175:
#line 538 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
#line 2947 "parse.c"
        break;
      case 176:
#line 539 "parse.y"
{
  Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy298);
  Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy298);
  yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp2, 0);
}
#line 2956 "parse.c"
        /* No destructor defined for DOT */
        break;
      case 177:
#line 544 "parse.y"
{
  Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-4].minor.yy298);
  Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy298);
  Expr *temp3 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy298);
  Expr *temp4 = sqliteExpr(TK_DOT, temp2, temp3, 0);
  yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp4, 0);
}
#line 2968 "parse.c"
        /* No destructor defined for DOT */
        /* No destructor defined for DOT */
        break;
      case 178:
#line 551 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_INTEGER, 0, 0, &yymsp[0].minor.yy0);}
#line 2975 "parse.c"
        break;
      case 179:
#line 552 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_FLOAT, 0, 0, &yymsp[0].minor.yy0);}
#line 2980 "parse.c"
        break;
      case 180:
#line 553 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_STRING, 0, 0, &yymsp[0].minor.yy0);}
#line 2985 "parse.c"
        break;
      case 181:
#line 554 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_VARIABLE, 0, 0, &yymsp[0].minor.yy0);
  if( yygotominor.yy242 ) yygotominor.yy242->iTable = ++pParse->nVar;
}
#line 2993 "parse.c"
        break;
      case 182:
#line 558 "parse.y"
{
  yygotominor.yy242 = sqliteExprFunction(yymsp[-1].minor.yy322, &yymsp[-3].minor.yy0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
}
#line 3001 "parse.c"
        /* No destructor defined for LP */
        break;
      case 183:
#line 562 "parse.y"
{
  yygotominor.yy242 = sqliteExprFunction(0, &yymsp[-3].minor.yy0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
}
#line 3010 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for STAR */
        break;
      case 184:
#line 566 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_AND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3017 "parse.c"
        /* No destructor defined for AND */
        break;
      case 185:
#line 567 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_OR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3023 "parse.c"
        /* No destructor defined for OR */
        break;
      case 186:
#line 568 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_LT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3029 "parse.c"
        /* No destructor defined for LT */
        break;
      case 187:
#line 569 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_GT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3035 "parse.c"
        /* No destructor defined for GT */
        break;
      case 188:
#line 570 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_LE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3041 "parse.c"
        /* No destructor defined for LE */
        break;
      case 189:
#line 571 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_GE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3047 "parse.c"
        /* No destructor defined for GE */
        break;
      case 190:
#line 572 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_NE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3053 "parse.c"
        /* No destructor defined for NE */
        break;
      case 191:
#line 573 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_EQ, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3059 "parse.c"
        /* No destructor defined for EQ */
        break;
      case 192:
#line 574 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_BITAND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3065 "parse.c"
        /* No destructor defined for BITAND */
        break;
      case 193:
#line 575 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_BITOR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3071 "parse.c"
        /* No destructor defined for BITOR */
        break;
      case 194:
#line 576 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_LSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3077 "parse.c"
        /* No destructor defined for LSHIFT */
        break;
      case 195:
#line 577 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_RSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3083 "parse.c"
        /* No destructor defined for RSHIFT */
        break;
      case 196:
#line 578 "parse.y"
{
  ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
  pList = sqliteExprListAppend(pList, yymsp[-2].minor.yy242, 0);
  yygotominor.yy242 = sqliteExprFunction(pList, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
  sqliteExprSpan(yygotominor.yy242, &yymsp[-2].minor.yy242->span, &yymsp[0].minor.yy242->span);
}
#line 3095 "parse.c"
        break;
      case 197:
#line 585 "parse.y"
{
  ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
  pList = sqliteExprListAppend(pList, yymsp[-3].minor.yy242, 0);
  yygotominor.yy242 = sqliteExprFunction(pList, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
  yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy242->span);
}
#line 3107 "parse.c"
        /* No destructor defined for NOT */
        break;
      case 198:
#line 594 "parse.y"
{yygotominor.yy372 = TK_LIKE;}
#line 3113 "parse.c"
        /* No destructor defined for LIKE */
        break;
      case 199:
#line 595 "parse.y"
{yygotominor.yy372 = TK_GLOB;}
#line 3119 "parse.c"
        /* No destructor defined for GLOB */
        break;
      case 200:
#line 596 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_PLUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3125 "parse.c"
        /* No destructor defined for PLUS */
        break;
      case 201:
#line 597 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_MINUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3131 "parse.c"
        /* No destructor defined for MINUS */
        break;
      case 202:
#line 598 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_STAR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3137 "parse.c"
        /* No destructor defined for STAR */
        break;
      case 203:
#line 599 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_SLASH, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3143 "parse.c"
        /* No destructor defined for SLASH */
        break;
      case 204:
#line 600 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_REM, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3149 "parse.c"
        /* No destructor defined for REM */
        break;
      case 205:
#line 601 "parse.y"
{yygotominor.yy242 = sqliteExpr(TK_CONCAT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
#line 3155 "parse.c"
        /* No destructor defined for CONCAT */
        break;
      case 206:
#line 602 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-1].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3164 "parse.c"
        break;
      case 207:
#line 606 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-2].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3172 "parse.c"
        /* No destructor defined for IS */
        break;
      case 208:
#line 610 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-1].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3181 "parse.c"
        break;
      case 209:
#line 614 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-2].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3189 "parse.c"
        /* No destructor defined for NOT */
        break;
      case 210:
#line 618 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-3].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3198 "parse.c"
        /* No destructor defined for IS */
        /* No destructor defined for NOT */
        break;
      case 211:
#line 622 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_NOT, yymsp[0].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
}
#line 3208 "parse.c"
        break;
      case 212:
#line 626 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_BITNOT, yymsp[0].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
}
#line 3216 "parse.c"
        break;
      case 213:
#line 630 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_UMINUS, yymsp[0].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
}
#line 3224 "parse.c"
        break;
      case 214:
#line 634 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_UPLUS, yymsp[0].minor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
}
#line 3232 "parse.c"
        break;
      case 215:
#line 638 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_SELECT, 0, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
  sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
}
#line 3241 "parse.c"
        break;
      case 216:
#line 643 "parse.y"
{
  ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
  pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
  yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-4].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
  sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy242->span);
}
#line 3252 "parse.c"
        /* No destructor defined for BETWEEN */
        /* No destructor defined for AND */
        break;
      case 217:
#line 650 "parse.y"
{
  ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
  pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
  yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-5].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
  yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy242->span);
}
#line 3266 "parse.c"
        /* No destructor defined for NOT */
        /* No destructor defined for BETWEEN */
        /* No destructor defined for AND */
        break;
      case 218:
#line 658 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
  sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3278 "parse.c"
        /* No destructor defined for IN */
        /* No destructor defined for LP */
        break;
      case 219:
#line 663 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
  sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3289 "parse.c"
        /* No destructor defined for IN */
        /* No destructor defined for LP */
        break;
      case 220:
#line 668 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
  yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3301 "parse.c"
        /* No destructor defined for NOT */
        /* No destructor defined for IN */
        /* No destructor defined for LP */
        break;
      case 221:
#line 674 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
  yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
}
#line 3314 "parse.c"
        /* No destructor defined for NOT */
        /* No destructor defined for IN */
        /* No destructor defined for LP */
        break;
      case 222:
#line 680 "parse.y"
{
  SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy298, &yymsp[0].minor.yy298);
  yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-3].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,yymsp[0].minor.yy298.z?&yymsp[0].minor.yy298:&yymsp[-1].minor.yy298);
}
#line 3327 "parse.c"
        /* No destructor defined for IN */
        break;
      case 223:
#line 686 "parse.y"
{
  SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy298, &yymsp[0].minor.yy298);
  yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
  yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
  sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,yymsp[0].minor.yy298.z?&yymsp[0].minor.yy298:&yymsp[-1].minor.yy298);
}
#line 3339 "parse.c"
        /* No destructor defined for NOT */
        /* No destructor defined for IN */
        break;
      case 224:
#line 696 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_CASE, yymsp[-3].minor.yy242, yymsp[-1].minor.yy242, 0);
  if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-2].minor.yy322;
  sqliteExprSpan(yygotominor.yy242, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
}
#line 3350 "parse.c"
        break;
      case 225:
#line 703 "parse.y"
{
  yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322, yymsp[-2].minor.yy242, 0);
  yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
}
#line 3358 "parse.c"
        /* No destructor defined for WHEN */
        /* No destructor defined for THEN */
        break;
      case 226:
#line 707 "parse.y"
{
  yygotominor.yy322 = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
  yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
}
#line 3368 "parse.c"
        /* No destructor defined for WHEN */
        /* No destructor defined for THEN */
        break;
      case 227:
#line 712 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 3375 "parse.c"
        /* No destructor defined for ELSE */
        break;
      case 228:
#line 713 "parse.y"
{yygotominor.yy242 = 0;}
#line 3381 "parse.c"
        break;
      case 229:
#line 715 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 3386 "parse.c"
        break;
      case 230:
#line 716 "parse.y"
{yygotominor.yy242 = 0;}
#line 3391 "parse.c"
        break;
      case 231:
#line 724 "parse.y"
{yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[0].minor.yy242,0);}
#line 3396 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 232:
#line 725 "parse.y"
{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,0);}
#line 3402 "parse.c"
        break;
      case 233:
#line 726 "parse.y"
{yygotominor.yy242 = yymsp[0].minor.yy242;}
#line 3407 "parse.c"
        break;
      case 234:
#line 727 "parse.y"
{yygotominor.yy242 = 0;}
#line 3412 "parse.c"
        break;
      case 235:
#line 732 "parse.y"
{
  SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-5].minor.yy298, &yymsp[-4].minor.yy298);
  if( yymsp[-9].minor.yy372!=OE_None ) yymsp[-9].minor.yy372 = yymsp[0].minor.yy372;
  if( yymsp[-9].minor.yy372==OE_Default) yymsp[-9].minor.yy372 = OE_Abort;
  sqliteCreateIndex(pParse, &yymsp[-7].minor.yy298, pSrc, yymsp[-2].minor.yy320, yymsp[-9].minor.yy372, &yymsp[-10].minor.yy0, &yymsp[-1].minor.yy0);
}
#line 3422 "parse.c"
        /* No destructor defined for INDEX */
        /* No destructor defined for ON */
        /* No destructor defined for LP */
        break;
      case 236:
#line 740 "parse.y"
{ yygotominor.yy372 = OE_Abort; }
#line 3430 "parse.c"
        /* No destructor defined for UNIQUE */
        break;
      case 237:
#line 741 "parse.y"
{ yygotominor.yy372 = OE_None; }
#line 3436 "parse.c"
        break;
      case 238:
#line 749 "parse.y"
{yygotominor.yy320 = 0;}
#line 3441 "parse.c"
        break;
      case 239:
#line 750 "parse.y"
{yygotominor.yy320 = yymsp[-1].minor.yy320;}
#line 3446 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 240:
#line 751 "parse.y"
{yygotominor.yy320 = sqliteIdListAppend(yymsp[-2].minor.yy320,&yymsp[0].minor.yy298);}
#line 3453 "parse.c"
        /* No destructor defined for COMMA */
        break;
      case 241:
#line 752 "parse.y"
{yygotominor.yy320 = sqliteIdListAppend(0,&yymsp[0].minor.yy298);}
#line 3459 "parse.c"
        break;
      case 242:
#line 753 "parse.y"
{yygotominor.yy298 = yymsp[-1].minor.yy298;}
#line 3464 "parse.c"
        /* No destructor defined for sortorder */
        break;
      case 243:
#line 758 "parse.y"
{
  sqliteDropIndex(pParse, sqliteSrcListAppend(0,&yymsp[-1].minor.yy298,&yymsp[0].minor.yy298));
}
#line 3472 "parse.c"
        /* No destructor defined for DROP */
        /* No destructor defined for INDEX */
        break;
      case 244:
#line 766 "parse.y"
{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-6].minor.yy298,&yymsp[-5].minor.yy298),&yymsp[-3].minor.yy298,&yymsp[0].minor.yy0,yymsp[-7].minor.yy372);}
#line 3479 "parse.c"
        /* No destructor defined for COPY */
        /* No destructor defined for FROM */
        /* No destructor defined for USING */
        /* No destructor defined for DELIMITERS */
        break;
      case 245:
#line 768 "parse.y"
{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-3].minor.yy298,&yymsp[-2].minor.yy298),&yymsp[0].minor.yy298,0,yymsp[-4].minor.yy372);}
#line 3488 "parse.c"
        /* No destructor defined for COPY */
        /* No destructor defined for FROM */
        break;
      case 246:
#line 772 "parse.y"
{sqliteVacuum(pParse,0);}
#line 3495 "parse.c"
        /* No destructor defined for VACUUM */
        break;
      case 247:
#line 773 "parse.y"
{sqliteVacuum(pParse,&yymsp[0].minor.yy298);}
#line 3501 "parse.c"
        /* No destructor defined for VACUUM */
        break;
      case 248:
#line 777 "parse.y"
{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy298,0);}
#line 3507 "parse.c"
        /* No destructor defined for PRAGMA */
        /* No destructor defined for EQ */
        break;
      case 249:
#line 778 "parse.y"
{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy0,0);}
#line 3514 "parse.c"
        /* No destructor defined for PRAGMA */
        /* No destructor defined for EQ */
        break;
      case 250:
#line 779 "parse.y"
{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy298,0);}
#line 3521 "parse.c"
        /* No destructor defined for PRAGMA */
        /* No destructor defined for EQ */
        break;
      case 251:
#line 780 "parse.y"
{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy298,1);}
#line 3528 "parse.c"
        /* No destructor defined for PRAGMA */
        /* No destructor defined for EQ */
        break;
      case 252:
#line 781 "parse.y"
{sqlitePragma(pParse,&yymsp[-3].minor.yy298,&yymsp[-1].minor.yy298,0);}
#line 3535 "parse.c"
        /* No destructor defined for PRAGMA */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 253:
#line 782 "parse.y"
{sqlitePragma(pParse,&yymsp[0].minor.yy298,&yymsp[0].minor.yy298,0);}
#line 3543 "parse.c"
        /* No destructor defined for PRAGMA */
        break;
      case 254:
#line 783 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy298;}
#line 3549 "parse.c"
        /* No destructor defined for plus_opt */
        break;
      case 255:
#line 784 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy298;}
#line 3555 "parse.c"
        /* No destructor defined for MINUS */
        break;
      case 256:
#line 785 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 3561 "parse.c"
        break;
      case 257:
#line 786 "parse.y"
{yygotominor.yy298 = yymsp[0].minor.yy0;}
#line 3566 "parse.c"
        break;
      case 258:
        /* No destructor defined for PLUS */
        break;
      case 259:
        break;
      case 260:
#line 792 "parse.y"
{
  Token all;
  all.z = yymsp[-4].minor.yy0.z;
  all.n = (yymsp[0].minor.yy0.z - yymsp[-4].minor.yy0.z) + yymsp[0].minor.yy0.n;
  sqliteFinishTrigger(pParse, yymsp[-1].minor.yy19, &all);
}
#line 3581 "parse.c"
        /* No destructor defined for trigger_decl */
        /* No destructor defined for BEGIN */
        break;
      case 261:
#line 800 "parse.y"
{
  SrcList *pTab = sqliteSrcListAppend(0, &yymsp[-3].minor.yy298, &yymsp[-2].minor.yy298);
  sqliteBeginTrigger(pParse, &yymsp[-7].minor.yy298, yymsp[-6].minor.yy372, yymsp[-5].minor.yy290.a, yymsp[-5].minor.yy290.b, pTab, yymsp[-1].minor.yy372, yymsp[0].minor.yy182, yymsp[-9].minor.yy372);
}
#line 3591 "parse.c"
        /* No destructor defined for TRIGGER */
        /* No destructor defined for ON */
        break;
      case 262:
#line 806 "parse.y"
{ yygotominor.yy372 = TK_BEFORE; }
#line 3598 "parse.c"
        /* No destructor defined for BEFORE */
        break;
      case 263:
#line 807 "parse.y"
{ yygotominor.yy372 = TK_AFTER;  }
#line 3604 "parse.c"
        /* No destructor defined for AFTER */
        break;
      case 264:
#line 808 "parse.y"
{ yygotominor.yy372 = TK_INSTEAD;}
#line 3610 "parse.c"
        /* No destructor defined for INSTEAD */
        /* No destructor defined for OF */
        break;
      case 265:
#line 809 "parse.y"
{ yygotominor.yy372 = TK_BEFORE; }
#line 3617 "parse.c"
        break;
      case 266:
#line 813 "parse.y"
{ yygotominor.yy290.a = TK_DELETE; yygotominor.yy290.b = 0; }
#line 3622 "parse.c"
        /* No destructor defined for DELETE */
        break;
      case 267:
#line 814 "parse.y"
{ yygotominor.yy290.a = TK_INSERT; yygotominor.yy290.b = 0; }
#line 3628 "parse.c"
        /* No destructor defined for INSERT */
        break;
      case 268:
#line 815 "parse.y"
{ yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = 0;}
#line 3634 "parse.c"
        /* No destructor defined for UPDATE */
        break;
      case 269:
#line 816 "parse.y"
{yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = yymsp[0].minor.yy320; }
#line 3640 "parse.c"
        /* No destructor defined for UPDATE */
        /* No destructor defined for OF */
        break;
      case 270:
#line 819 "parse.y"
{ yygotominor.yy372 = TK_ROW; }
#line 3647 "parse.c"
        break;
      case 271:
#line 820 "parse.y"
{ yygotominor.yy372 = TK_ROW; }
#line 3652 "parse.c"
        /* No destructor defined for FOR */
        /* No destructor defined for EACH */
        /* No destructor defined for ROW */
        break;
      case 272:
#line 821 "parse.y"
{ yygotominor.yy372 = TK_STATEMENT; }
#line 3660 "parse.c"
        /* No destructor defined for FOR */
        /* No destructor defined for EACH */
        /* No destructor defined for STATEMENT */
        break;
      case 273:
#line 824 "parse.y"
{ yygotominor.yy182 = 0; }
#line 3668 "parse.c"
        break;
      case 274:
#line 825 "parse.y"
{ yygotominor.yy182 = yymsp[0].minor.yy242; }
#line 3673 "parse.c"
        /* No destructor defined for WHEN */
        break;
      case 275:
#line 829 "parse.y"
{
  yymsp[-2].minor.yy19->pNext = yymsp[0].minor.yy19;
  yygotominor.yy19 = yymsp[-2].minor.yy19;
}
#line 3682 "parse.c"
        /* No destructor defined for SEMI */
        break;
      case 276:
#line 833 "parse.y"
{ yygotominor.yy19 = 0; }
#line 3688 "parse.c"
        break;
      case 277:
#line 839 "parse.y"
{ yygotominor.yy19 = sqliteTriggerUpdateStep(&yymsp[-3].minor.yy298, yymsp[-1].minor.yy322, yymsp[0].minor.yy242, yymsp[-4].minor.yy372); }
#line 3693 "parse.c"
        /* No destructor defined for UPDATE */
        /* No destructor defined for SET */
        break;
      case 278:
#line 844 "parse.y"
{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-5].minor.yy298, yymsp[-4].minor.yy320, yymsp[-1].minor.yy322, 0, yymsp[-7].minor.yy372);}
#line 3700 "parse.c"
        /* No destructor defined for INTO */
        /* No destructor defined for VALUES */
        /* No destructor defined for LP */
        /* No destructor defined for RP */
        break;
      case 279:
#line 847 "parse.y"
{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-2].minor.yy298, yymsp[-1].minor.yy320, 0, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);}
#line 3709 "parse.c"
        /* No destructor defined for INTO */
        break;
      case 280:
#line 851 "parse.y"
{yygotominor.yy19 = sqliteTriggerDeleteStep(&yymsp[-1].minor.yy298, yymsp[0].minor.yy242);}
#line 3715 "parse.c"
        /* No destructor defined for DELETE */
        /* No destructor defined for FROM */
        break;
      case 281:
#line 854 "parse.y"
{yygotominor.yy19 = sqliteTriggerSelectStep(yymsp[0].minor.yy179); }
#line 3722 "parse.c"
        break;
      case 282:
#line 857 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, 0); 
  yygotominor.yy242->iColumn = OE_Ignore;
  sqliteExprSpan(yygotominor.yy242, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
}
#line 3731 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for IGNORE */
        break;
      case 283:
#line 862 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy298); 
  yygotominor.yy242->iColumn = OE_Rollback;
  sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
}
#line 3742 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for ROLLBACK */
        /* No destructor defined for COMMA */
        break;
      case 284:
#line 867 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy298); 
  yygotominor.yy242->iColumn = OE_Abort;
  sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
}
#line 3754 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for ABORT */
        /* No destructor defined for COMMA */
        break;
      case 285:
#line 872 "parse.y"
{
  yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy298); 
  yygotominor.yy242->iColumn = OE_Fail;
  sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
}
#line 3766 "parse.c"
        /* No destructor defined for LP */
        /* No destructor defined for FAIL */
        /* No destructor defined for COMMA */
        break;
      case 286:
#line 879 "parse.y"
{
  sqliteDropTrigger(pParse,sqliteSrcListAppend(0,&yymsp[-1].minor.yy298,&yymsp[0].minor.yy298));
}
#line 3776 "parse.c"
        /* No destructor defined for DROP */
        /* No destructor defined for TRIGGER */
        break;
      case 287:
#line 884 "parse.y"
{
  sqliteAttach(pParse, &yymsp[-3].minor.yy298, &yymsp[-1].minor.yy298, &yymsp[0].minor.yy298);
}
#line 3785 "parse.c"
        /* No destructor defined for ATTACH */
        /* No destructor defined for database_kw_opt */
        /* No destructor defined for AS */
        break;
      case 288:
#line 888 "parse.y"
{ yygotominor.yy298 = yymsp[0].minor.yy298; }
#line 3793 "parse.c"
        /* No destructor defined for USING */
        break;
      case 289:
#line 889 "parse.y"
{ yygotominor.yy298.z = 0; yygotominor.yy298.n = 0; }
#line 3799 "parse.c"
        break;
      case 290:
        /* No destructor defined for DATABASE */
        break;
      case 291:
        break;
      case 292:
#line 895 "parse.y"
{
  sqliteDetach(pParse, &yymsp[0].minor.yy298);
}
#line 3811 "parse.c"
        /* No destructor defined for DETACH */
        /* No destructor defined for database_kw_opt */
        break;
  };
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yypParser,yygoto);
  if( yyact < YYNSTATE ){
    yy_shift(yypParser,yyact,yygoto,&yygotominor);
  }else if( yyact == YYNSTATE + YYNRULE + 1 ){
    yy_accept(yypParser);
  }
}
parse.c1848
STATIC VOIDyy_parse_failed( yyParser *yypParser )
static void yy_parse_failed(
  yyParser *yypParser           /* The parser */
){
  sqliteParserARG_FETCH;
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */
  sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
parse.c3827
STATIC VOIDyy_syntax_error( yyParser *yypParser, int yymajor, YYMINORTYPE yyminor )
static void yy_syntax_error(
  yyParser *yypParser,           /* The parser */
  int yymajor,                   /* The major type of the error token */
  YYMINORTYPE yyminor            /* The minor type of the error token */
){
  sqliteParserARG_FETCH;
#define TOKEN (yyminor.yy0)
#line 23 "parse.y"

  if( pParse->zErrMsg==0 ){
    if( TOKEN.z[0] ){
      sqliteErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
    }else{
      sqliteErrorMsg(pParse, "incomplete SQL statement");
    }
  }

#line 3865 "parse.c"
  sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
parse.c3845
STATIC VOIDyy_accept( yyParser *yypParser )
static void yy_accept(
  yyParser *yypParser           /* The parser */
){
  sqliteParserARG_FETCH;
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */
  sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
parse.c3869
VOIDsqliteParser( void *yyp, int yymajor, sqliteParserTOKENTYPE yyminor sqliteParserARG_PDECL )
void sqliteParser(
  void *yyp,                   /* The parser */
  int yymajor,                 /* The major token code number */
  sqliteParserTOKENTYPE yyminor       /* The value for the token */
  sqliteParserARG_PDECL               /* Optional %extra_argument parameter */
){
  YYMINORTYPE yyminorunion;
  int yyact;            /* The parser action. */
  int yyendofinput;     /* True if we are at the end of input */
  int yyerrorhit = 0;   /* True if yymajor has invoked an error */
  yyParser *yypParser;  /* The parser */

  /* (re)initialize the parser, if necessary */
  yypParser = (yyParser*)yyp;
  if( yypParser->yyidx<0 ){
    if( yymajor==0 ) return;
    yypParser->yyidx = 0;
    yypParser->yyerrcnt = -1;
    yypParser->yystack[0].stateno = 0;
    yypParser->yystack[0].major = 0;
  }
  yyminorunion.yy0 = yyminor;
  yyendofinput = (yymajor==0);
  sqliteParserARG_STORE;

#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,yymajor);
    if( yyactyyerrcnt--;
      if( yyendofinput && yypParser->yyidx>=0 ){
        yymajor = 0;
      }else{
        yymajor = YYNOCODE;
      }
    }else if( yyact < YYNSTATE + YYNRULE ){
      yy_reduce(yypParser,yyact-YYNSTATE);
    }else if( yyact == YY_ERROR_ACTION ){
      int yymx;
#ifndef NDEBUG
      if( yyTraceFILE ){
        fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
      }
#endif
#ifdef YYERRORSYMBOL
      /* A syntax error has occurred.
      ** The response to an error depends upon whether or not the
      ** grammar defines an error token "ERROR".  
      **
      ** This is what we do if the grammar does define ERROR:
      **
      **  * Call the %syntax_error function.
      **
      **  * Begin popping the stack until we enter a state where
      **    it is legal to shift the error symbol, then shift
      **    the error symbol.
      **
      **  * Set the error count to three.
      **
      **  * Begin accepting and shifting new tokens.  No new error
      **    processing will occur until three tokens have been
      **    shifted successfully.
      **
      */
      if( yypParser->yyerrcnt<0 ){
        yy_syntax_error(yypParser,yymajor,yyminorunion);
      }
      yymx = yypParser->yystack[yypParser->yyidx].major;
      if( yymx==YYERRORSYMBOL || yyerrorhit ){
#ifndef NDEBUG
        if( yyTraceFILE ){
          fprintf(yyTraceFILE,"%sDiscard input token %s\n",
             yyTracePrompt,yyTokenName[yymajor]);
        }
#endif
        yy_destructor(yymajor,&yyminorunion);
        yymajor = YYNOCODE;
      }else{
         while(
          yypParser->yyidx >= 0 &&
          yymx != YYERRORSYMBOL &&
          (yyact = yy_find_shift_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yyidx < 0 || yymajor==0 ){
          yy_destructor(yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
          yymajor = YYNOCODE;
        }else if( yymx!=YYERRORSYMBOL ){
          YYMINORTYPE u2;
          u2.YYERRSYMDT = 0;
          yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
        }
      }
      yypParser->yyerrcnt = 3;
      yyerrorhit = 1;
#else  /* YYERRORSYMBOL is not defined */
      /* This is what we do if the grammar does not define ERROR:
      **
      **  * Report an error message, and throw away the input token.
      **
      **  * If the input token is $, then fail the parse.
      **
      ** As before, subsequent error messages are suppressed until
      ** three input tokens have been successfully shifted.
      */
      if( yypParser->yyerrcnt<=0 ){
        yy_syntax_error(yypParser,yymajor,yyminorunion);
      }
      yypParser->yyerrcnt = 3;
      yy_destructor(yymajor,&yyminorunion);
      if( yyendofinput ){
        yy_parse_failed(yypParser);
      }
      yymajor = YYNOCODE;
#endif
    }else{
      yy_accept(yypParser);
      yymajor = YYNOCODE;
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
  return;
}
parse.c3887
pragma.c
TypeFunctionSourceLine
STATIC INTgetBoolean(const char *z)
static int getBoolean(const char *z){
  static char *azTrue[] = { "yes", "on", "true" };
  int i;
  if( z[0]==0 ) return 0;
  if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
    return atoi(z);
  }
  for(i=0; i
pragma.c19
STATIC INTgetSafetyLevel(char *z)
static int getSafetyLevel(char *z){
  static const struct {
    const char *zWord;
    int val;
  } aKey[] = {
    { "no",    0 },
    { "off",   0 },
    { "false", 0 },
    { "yes",   1 },
    { "on",    1 },
    { "true",  1 },
    { "full",  2 },
  };
  int i;
  if( z[0]==0 ) return 1;
  if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
    return atoi(z);
  }
  for(i=0; i
pragma.c35
STATIC INTgetTempStore(const char *z)
static int getTempStore(const char *z){
  if( z[0]>='0' && z[0]<='2' ){
    return z[0] - '0';
  }else if( sqliteStrICmp(z, "file")==0 ){
    return 1;
  }else if( sqliteStrICmp(z, "memory")==0 ){
    return 2;
  }else{
    return 0;
  }
}
pragma.c69
STATIC INTchangeTempStorage(Parse *pParse, const char *zStorageType)
static int changeTempStorage(Parse *pParse, const char *zStorageType){
  int ts = getTempStore(zStorageType);
  sqlite *db = pParse->db;
  if( db->temp_store==ts ) return SQLITE_OK;
  if( db->aDb[1].pBt!=0 ){
    if( db->flags & SQLITE_InTrans ){
      sqliteErrorMsg(pParse, "temporary storage cannot be changed "
        "from within a transaction");
      return SQLITE_ERROR;
    }
    sqliteBtreeClose(db->aDb[1].pBt);
    db->aDb[1].pBt = 0;
    sqliteResetInternalSchema(db, 0);
  }
  db->temp_store = ts;
  return SQLITE_OK;
}
pragma.c86
STATIC INTflagPragma(Parse *pParse, const char *zLeft, const char *zRight)
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
  static const struct {
    const char *zName;  /* Name of the pragma */
    int mask;           /* Mask for the db->flags value */
  } aPragma[] = {
    { "vdbe_trace",               SQLITE_VdbeTrace     },
    { "full_column_names",        SQLITE_FullColNames  },
    { "short_column_names",       SQLITE_ShortColNames },
    { "show_datatypes",           SQLITE_ReportTypes   },
    { "count_changes",            SQLITE_CountRows     },
    { "empty_result_callbacks",   SQLITE_NullCallback  },
  };
  int i;
  for(i=0; idb;
      Vdbe *v;
      if( strcmp(zLeft,zRight)==0 && (v = sqliteGetVdbe(pParse))!=0 ){
        sqliteVdbeOp3(v, OP_ColumnName, 0, 1, aPragma[i].zName, P3_STATIC);
        sqliteVdbeOp3(v, OP_ColumnName, 1, 0, "boolean", P3_STATIC);
        sqliteVdbeCode(v, OP_Integer, (db->flags & aPragma[i].mask)!=0, 0,
                          OP_Callback, 1, 0,
                          0);
      }else if( getBoolean(zRight) ){
        db->flags |= aPragma[i].mask;
      }else{
        db->flags &= ~aPragma[i].mask;
      }
      return 1;
    }
  }
  return 0;
}
pragma.c109
VOIDsqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag)
void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
  char *zLeft = 0;
  char *zRight = 0;
  sqlite *db = pParse->db;
  Vdbe *v = sqliteGetVdbe(pParse);
  if( v==0 ) return;

  zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
  sqliteDequote(zLeft);
  if( minusFlag ){
    zRight = 0;
    sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
  }else{
    zRight = sqliteStrNDup(pRight->z, pRight->n);
    sqliteDequote(zRight);
  }
  if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){
    sqliteFree(zLeft);
    sqliteFree(zRight);
    return;
  }
 
  /*
  **  PRAGMA default_cache_size
  **  PRAGMA default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
  ** The default cache size is stored in meta-value 2 of page 1 of the
  ** database file.  The cache size is actually the absolute value of
  ** this memory location.  The sign of meta-value 2 determines the
  ** synchronous setting.  A negative value means synchronous is off
  ** and a positive value means synchronous is on.
  */
  if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
    static VdbeOpList getCacheSize[] = {
      { OP_ReadCookie,  0, 2,        0},
      { OP_AbsValue,    0, 0,        0},
      { OP_Dup,         0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 6,        0},
      { OP_Integer,     0, 0,        0},  /* 5 */
      { OP_ColumnName,  0, 1,        "cache_size"},
      { OP_Callback,    1, 0,        0},
    };
    int addr;
    if( pRight->z==pLeft->z ){
      addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqliteVdbeChangeP1(v, addr+5, MAX_PAGES);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqliteBeginWriteOperation(pParse, 0, 0);
      sqliteVdbeAddOp(v, OP_Integer, size, 0);
      sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
      addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
      sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
      sqliteVdbeAddOp(v, OP_Negative, 0, 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
      sqliteEndWriteOperation(pParse);
      db->cache_size = db->cache_size<0 ? -size : size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
    }
  }else

  /*
  **  PRAGMA cache_size
  **  PRAGMA cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size.  The local setting can be different from
  ** the persistent cache size value that is stored in the database
  ** file itself.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets the local
  ** page cache size value.  It does not change the persistent
  ** cache size stored on the disk so the cache size will revert
  ** to its default value when the database is closed and reopened.
  ** N should be a positive integer.
  */
  if( sqliteStrICmp(zLeft,"cache_size")==0 ){
    static VdbeOpList getCacheSize[] = {
      { OP_ColumnName,  0, 1,        "cache_size"},
      { OP_Callback,    1, 0,        0},
    };
    if( pRight->z==pLeft->z ){
      int size = db->cache_size;;
      if( size<0 ) size = -size;
      sqliteVdbeAddOp(v, OP_Integer, size, 0);
      sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      if( db->cache_size<0 ) size = -size;
      db->cache_size = size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
    }
  }else

  /*
  **  PRAGMA default_synchronous
  **  PRAGMA default_synchronous=ON|OFF|NORMAL|FULL
  **
  ** The first form returns the persistent value of the "synchronous" setting
  ** that is stored in the database.  This is the synchronous setting that
  ** is used whenever the database is opened unless overridden by a separate
  ** "synchronous" pragma.  The second form changes the persistent and the
  ** local synchronous setting to the value given.
  **
  ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls
  ** to make sure data is committed to disk.  Write operations are very fast,
  ** but a power failure can leave the database in an inconsistent state.
  ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to
  ** make sure data is being written to disk.  The risk of corruption due to
  ** a power loss in this mode is negligible but non-zero.  If synchronous
  ** is FULL, extra fsync()s occur to reduce the risk of corruption to near
  ** zero, but with a write performance penalty.  The default mode is NORMAL.
  */
  if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
    static VdbeOpList getSync[] = {
      { OP_ColumnName,  0, 1,        "synchronous"},
      { OP_ReadCookie,  0, 3,        0},
      { OP_Dup,         0, 0,        0},
      { OP_If,          0, 0,        0},  /* 3 */
      { OP_ReadCookie,  0, 2,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Lt,          0, 5,        0},
      { OP_AddImm,      1, 0,        0},
      { OP_Callback,    1, 0,        0},
      { OP_Halt,        0, 0,        0},
      { OP_AddImm,     -1, 0,        0},  /* 10 */
      { OP_Callback,    1, 0,        0}
    };
    if( pRight->z==pLeft->z ){
      int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
      sqliteVdbeChangeP2(v, addr+3, addr+10);
    }else{
      int addr;
      int size = db->cache_size;
      if( size<0 ) size = -size;
      sqliteBeginWriteOperation(pParse, 0, 0);
      sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
      addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
      sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
      sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
      sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
      db->safety_level = getSafetyLevel(zRight)+1;
      if( db->safety_level==1 ){
        sqliteVdbeAddOp(v, OP_Negative, 0, 0);
        size = -size;
      }
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
      sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 3);
      sqliteEndWriteOperation(pParse);
      db->cache_size = size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
      sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
    }
  }else

  /*
  **   PRAGMA synchronous
  **   PRAGMA synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  if( sqliteStrICmp(zLeft,"synchronous")==0 ){
    static VdbeOpList getSync[] = {
      { OP_ColumnName,  0, 1,        "synchronous"},
      { OP_Callback,    1, 0,        0},
    };
    if( pRight->z==pLeft->z ){
      sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0);
      sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
    }else{
      int size = db->cache_size;
      if( size<0 ) size = -size;
      db->safety_level = getSafetyLevel(zRight)+1;
      if( db->safety_level==1 ) size = -size;
      db->cache_size = size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
      sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
    }
  }else

#ifndef NDEBUG
  if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
    if( getBoolean(zRight) ){
      always_code_trigger_setup = 1;
    }else{
      always_code_trigger_setup = 0;
    }
  }else
#endif

  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() call also generates any necessary code */
  }else

  if( sqliteStrICmp(zLeft, "table_info")==0 ){
    Table *pTab;
    pTab = sqliteFindTable(db, zRight, 0);
    if( pTab ){
      static VdbeOpList tableInfoPreface[] = {
        { OP_ColumnName,  0, 0,       "cid"},
        { OP_ColumnName,  1, 0,       "name"},
        { OP_ColumnName,  2, 0,       "type"},
        { OP_ColumnName,  3, 0,       "notnull"},
        { OP_ColumnName,  4, 0,       "dflt_value"},
        { OP_ColumnName,  5, 1,       "pk"},
      };
      int i;
      sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
      sqliteViewGetColumnNames(pParse, pTab);
      for(i=0; inCol; i++){
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0,
           pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0);
        sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0,
           pTab->aCol[i].zDflt, P3_STATIC);
        sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0);
        sqliteVdbeAddOp(v, OP_Callback, 6, 0);
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "index_info")==0 ){
    Index *pIdx;
    Table *pTab;
    pIdx = sqliteFindIndex(db, zRight, 0);
    if( pIdx ){
      static VdbeOpList tableInfoPreface[] = {
        { OP_ColumnName,  0, 0,       "seqno"},
        { OP_ColumnName,  1, 0,       "cid"},
        { OP_ColumnName,  2, 1,       "name"},
      };
      int i;
      pTab = pIdx->pTable;
      sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
      for(i=0; inColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
        assert( pTab->nCol>cnum );
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0);
        sqliteVdbeAddOp(v, OP_Callback, 3, 0);
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "index_list")==0 ){
    Index *pIdx;
    Table *pTab;
    pTab = sqliteFindTable(db, zRight, 0);
    if( pTab ){
      v = sqliteGetVdbe(pParse);
      pIdx = pTab->pIndex;
    }
    if( pTab && pIdx ){
      int i = 0; 
      static VdbeOpList indexListPreface[] = {
        { OP_ColumnName,  0, 0,       "seq"},
        { OP_ColumnName,  1, 0,       "name"},
        { OP_ColumnName,  2, 1,       "unique"},
      };

      sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
      while(pIdx){
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0);
        sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
        sqliteVdbeAddOp(v, OP_Callback, 3, 0);
        ++i;
        pIdx = pIdx->pNext;
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){
    FKey *pFK;
    Table *pTab;
    pTab = sqliteFindTable(db, zRight, 0);
    if( pTab ){
      v = sqliteGetVdbe(pParse);
      pFK = pTab->pFKey;
    }
    if( pTab && pFK ){
      int i = 0; 
      static VdbeOpList indexListPreface[] = {
        { OP_ColumnName,  0, 0,       "id"},
        { OP_ColumnName,  1, 0,       "seq"},
        { OP_ColumnName,  2, 0,       "table"},
        { OP_ColumnName,  3, 0,       "from"},
        { OP_ColumnName,  4, 1,       "to"},
      };

      sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
      while(pFK){
        int j;
        for(j=0; jnCol; j++){
          sqliteVdbeAddOp(v, OP_Integer, i, 0);
          sqliteVdbeAddOp(v, OP_Integer, j, 0);
          sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0);
          sqliteVdbeOp3(v, OP_String, 0, 0,
                           pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
          sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0);
          sqliteVdbeAddOp(v, OP_Callback, 5, 0);
        }
        ++i;
        pFK = pFK->pNextFrom;
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "database_list")==0 ){
    int i;
    static VdbeOpList indexListPreface[] = {
      { OP_ColumnName,  0, 0,       "seq"},
      { OP_ColumnName,  1, 0,       "name"},
      { OP_ColumnName,  2, 1,       "file"},
    };

    sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
    for(i=0; inDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqliteVdbeAddOp(v, OP_Integer, i, 0);
      sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0);
      sqliteVdbeOp3(v, OP_String, 0, 0,
           sqliteBtreeGetFilename(db->aDb[i].pBt), 0);
      sqliteVdbeAddOp(v, OP_Callback, 3, 0);
    }
  }else


  /*
  **   PRAGMA temp_store
  **   PRAGMA temp_store = "default"|"memory"|"file"
  **
  ** Return or set the local value of the temp_store flag.  Changing
  ** the local value does not make changes to the disk file and the default
  ** value will be restored the next time the database is opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqliteStrICmp(zLeft, "temp_store")==0 ){
    static VdbeOpList getTmpDbLoc[] = {
      { OP_ColumnName,  0, 1,        "temp_store"},
      { OP_Callback,    1, 0,        0},
    };
    if( pRight->z==pLeft->z ){
      sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0);
      sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
    }else{
      changeTempStorage(pParse, zRight);
    }
  }else

  /*
  **   PRAGMA default_temp_store
  **   PRAGMA default_temp_store = "default"|"memory"|"file"
  **
  ** Return or set the value of the persistent temp_store flag.  Any
  ** change does not take effect until the next time the database is
  ** opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){
    static VdbeOpList getTmpDbLoc[] = {
      { OP_ColumnName,  0, 1,        "temp_store"},
      { OP_ReadCookie,  0, 5,        0},
      { OP_Callback,    1, 0,        0}};
    if( pRight->z==pLeft->z ){
      sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
    }else{
      sqliteBeginWriteOperation(pParse, 0, 0);
      sqliteVdbeAddOp(v, OP_Integer, getTempStore(zRight), 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 5);
      sqliteEndWriteOperation(pParse);
    }
  }else

#ifndef NDEBUG
  if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
    extern void sqliteParserTrace(FILE*, char *);
    if( getBoolean(zRight) ){
      sqliteParserTrace(stdout, "parser: ");
    }else{
      sqliteParserTrace(0, 0);
    }
  }else
#endif

  if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
    int i, j, addr;

    /* Code that initializes the integrity check program.  Set the
    ** error count 0
    */
    static VdbeOpList initCode[] = {
      { OP_Integer,     0, 0,        0},
      { OP_MemStore,    0, 1,        0},
      { OP_ColumnName,  0, 1,        "integrity_check"},
    };

    /* Code to do an BTree integrity check on a single database file.
    */
    static VdbeOpList checkDb[] = {
      { OP_SetInsert,   0, 0,        "2"},
      { OP_Integer,     0, 0,        0},    /* 1 */
      { OP_OpenRead,    0, 2,        0},
      { OP_Rewind,      0, 7,        0},    /* 3 */
      { OP_Column,      0, 3,        0},    /* 4 */
      { OP_SetInsert,   0, 0,        0},
      { OP_Next,        0, 4,        0},    /* 6 */
      { OP_IntegrityCk, 0, 0,        0},    /* 7 */
      { OP_Dup,         0, 1,        0},
      { OP_String,      0, 0,        "ok"},
      { OP_StrEq,       0, 12,       0},    /* 10 */
      { OP_MemIncr,     0, 0,        0},
      { OP_String,      0, 0,        "*** in database "},
      { OP_String,      0, 0,        0},    /* 13 */
      { OP_String,      0, 0,        " ***\n"},
      { OP_Pull,        3, 0,        0},
      { OP_Concat,      4, 1,        0},
      { OP_Callback,    1, 0,        0},
    };

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static VdbeOpList endCode[] = {
      { OP_MemLoad,     0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 0,        0},    /* 2 */
      { OP_String,      0, 0,        "ok"},
      { OP_Callback,    1, 0,        0},
    };

    /* Initialize the VDBE program */
    sqliteVdbeAddOpList(v, ArraySize(initCode), initCode);

    /* Do an integrity check on each database file */
    for(i=0; inDb; i++){
      HashElem *x;

      /* Do an integrity check of the B-Tree
      */
      addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
      sqliteVdbeChangeP1(v, addr+1, i);
      sqliteVdbeChangeP2(v, addr+3, addr+7);
      sqliteVdbeChangeP2(v, addr+6, addr+4);
      sqliteVdbeChangeP2(v, addr+7, i);
      sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb));
      sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC);

      /* Make sure all the indices are constructed correctly.
      */
      sqliteCodeVerifySchema(pParse, i);
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          if( pIdx->tnum==0 ) continue;
          sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
          sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0);
        }
        sqliteVdbeAddOp(v, OP_Integer, 0, 0);
        sqliteVdbeAddOp(v, OP_MemStore, 1, 1);
        loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0);
        sqliteVdbeAddOp(v, OP_MemIncr, 1, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int k, jmp2;
          static VdbeOpList idxErr[] = {
            { OP_MemIncr,     0,  0,  0},
            { OP_String,      0,  0,  "rowid "},
            { OP_Recno,       1,  0,  0},
            { OP_String,      0,  0,  " missing from index "},
            { OP_String,      0,  0,  0},    /* 4 */
            { OP_Concat,      4,  0,  0},
            { OP_Callback,    1,  0,  0},
          };
          sqliteVdbeAddOp(v, OP_Recno, 1, 0);
          for(k=0; knColumn; k++){
            int idx = pIdx->aiColumn[k];
            if( idx==pTab->iPKey ){
              sqliteVdbeAddOp(v, OP_Recno, 1, 0);
            }else{
              sqliteVdbeAddOp(v, OP_Column, 1, idx);
            }
          }
          sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
          if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
          jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0);
          addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
          sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v));
        }
        sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1);
        sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v));
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static VdbeOpList cntIdx[] = {
             { OP_Integer,      0,  0,  0},
             { OP_MemStore,     2,  1,  0},
             { OP_Rewind,       0,  0,  0},  /* 2 */
             { OP_MemIncr,      2,  0,  0},
             { OP_Next,         0,  0,  0},  /* 4 */
             { OP_MemLoad,      1,  0,  0},
             { OP_MemLoad,      2,  0,  0},
             { OP_Eq,           0,  0,  0},  /* 7 */
             { OP_MemIncr,      0,  0,  0},
             { OP_String,       0,  0,  "wrong # of entries in index "},
             { OP_String,       0,  0,  0},  /* 10 */
             { OP_Concat,       2,  0,  0},
             { OP_Callback,     1,  0,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqliteVdbeChangeP1(v, addr+2, j+2);
          sqliteVdbeChangeP2(v, addr+2, addr+5);
          sqliteVdbeChangeP1(v, addr+4, j+2);
          sqliteVdbeChangeP2(v, addr+4, addr+3);
          sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx));
          sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC);
        }
      } 
    }
    addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode);
    sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode));
  }else

  {}
  sqliteFree(zLeft);
  sqliteFree(zRight);
}
pragma.c148
printf.c
TypeFunctionSourceLine
STATIC INTet_getdigit(LONGDOUBLE_TYPE *val, int *cnt)
static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
  int digit;
  LONGDOUBLE_TYPE d;
  if( (*cnt)++ >= 16 ) return '0';
  digit = (int)*val;
  d = digit;
  digit += '0';
  *val = (*val - d)*10.0;
  return digit;
}
printf.c137
STATIC INT VXPRINTF( VOID (*FUNC(void*,const char*,int), void *arg, int useExtended, const char *fmt, va_list ap )
static int vxprintf(
  void (*func)(void*,const char*,int),     /* Consumer of text */
  void *arg,                         /* First argument to the consumer */
  int useExtended,                   /* Allow extended %-conversions */
  const char *fmt,                   /* Format string */
  va_list ap                         /* arguments */
){
  int c;                     /* Next character in the format string */
  char *bufpt;               /* Pointer to the conversion buffer */
  int precision;             /* Precision of the current field */
  int length;                /* Length of the field */
  int idx;                   /* A general purpose loop counter */
  int count;                 /* Total number of characters output */
  int width;                 /* Width of the current field */
  etByte flag_leftjustify;   /* True if "-" flag is present */
  etByte flag_plussign;      /* True if "+" flag is present */
  etByte flag_blanksign;     /* True if " " flag is present */
  etByte flag_alternateform; /* True if "#" flag is present */
  etByte flag_zeropad;       /* True if field width constant starts with zero */
  etByte flag_long;          /* True if "l" flag is present */
  unsigned long longvalue;   /* Value for integer types */
  LONGDOUBLE_TYPE realvalue; /* Value for real types */
  et_info *infop;            /* Pointer to the appropriate info structure */
  char buf[etBUFSIZE];       /* Conversion buffer */
  char prefix;               /* Prefix character.  "+" or "-" or " " or '\0'. */
  etByte errorflag = 0;      /* True if an error is encountered */
  etByte xtype;              /* Conversion paradigm */
  char *zExtra;              /* Extra memory used for etTCLESCAPE conversions */
  static char spaces[] = "                                                  ";
#define etSPACESIZE (sizeof(spaces)-1)
#ifndef etNOFLOATINGPOINT
  int  exp;                  /* exponent of real numbers */
  double rounder;            /* Used for rounding floating point values */
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
  etByte flag_exp;           /* True to force display of the exponent */
  int nsd;                   /* Number of significant digits returned */
#endif

  func(arg,"",0);
  count = length = 0;
  bufpt = 0;
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      int amt;
      bufpt = (char *)fmt;
      amt = 1;
      while( (c=(*++fmt))!='%' && c!=0 ) amt++;
      (*func)(arg,bufpt,amt);
      count += amt;
      if( c==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      errorflag = 1;
      (*func)(arg,"%",1);
      count++;
      break;
    }
    /* Find out what flags are present */
    flag_leftjustify = flag_plussign = flag_blanksign = 
     flag_alternateform = flag_zeropad = 0;
    do{
      switch( c ){
        case '-':   flag_leftjustify = 1;     c = 0;   break;
        case '+':   flag_plussign = 1;        c = 0;   break;
        case ' ':   flag_blanksign = 1;       c = 0;   break;
        case '#':   flag_alternateform = 1;   c = 0;   break;
        case '0':   flag_zeropad = 1;         c = 0;   break;
        default:                                       break;
      }
    }while( c==0 && (c=(*++fmt))!=0 );
    /* Get the field width */
    width = 0;
    if( c=='*' ){
      width = va_arg(ap,int);
      if( width<0 ){
        flag_leftjustify = 1;
        width = -width;
      }
      c = *++fmt;
    }else{
      while( c>='0' && c<='9' ){
        width = width*10 + c - '0';
        c = *++fmt;
      }
    }
    if( width > etBUFSIZE-10 ){
      width = etBUFSIZE-10;
    }
    /* Get the precision */
    if( c=='.' ){
      precision = 0;
      c = *++fmt;
      if( c=='*' ){
        precision = va_arg(ap,int);
        if( precision<0 ) precision = -precision;
        c = *++fmt;
      }else{
        while( c>='0' && c<='9' ){
          precision = precision*10 + c - '0';
          c = *++fmt;
        }
      }
      /* Limit the precision to prevent overflowing buf[] during conversion */
      if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40;
    }else{
      precision = -1;
    }
    /* Get the conversion type modifier */
    if( c=='l' ){
      flag_long = 1;
      c = *++fmt;
    }else{
      flag_long = 0;
    }
    /* Fetch the info entry for the field */
    infop = 0;
    xtype = etERROR;
    for(idx=0; idxflags & FLAG_INTERN)==0 ){
          xtype = infop->type;
        }
        break;
      }
    }
    zExtra = 0;

    /*
    ** At this point, variables are initialized as follows:
    **
    **   flag_alternateform          TRUE if a '#' is present.
    **   flag_plussign               TRUE if a '+' is present.
    **   flag_leftjustify            TRUE if a '-' is present or if the
    **                               field width was negative.
    **   flag_zeropad                TRUE if the width began with 0.
    **   flag_long                   TRUE if the letter 'l' (ell) prefixed
    **                               the conversion character.
    **   flag_blanksign              TRUE if a ' ' is present.
    **   width                       The specified field width.  This is
    **                               always non-negative.  Zero is the default.
    **   precision                   The specified precision.  The default
    **                               is -1.
    **   xtype                       The class of the conversion.
    **   infop                       Pointer to the appropriate info struct.
    */
    switch( xtype ){
      case etRADIX:
        if( flag_long )  longvalue = va_arg(ap,long);
        else             longvalue = va_arg(ap,int);
#if 1
        /* For the format %#x, the value zero is printed "0" not "0x0".
        ** I think this is stupid. */
        if( longvalue==0 ) flag_alternateform = 0;
#else
        /* More sensible: turn off the prefix for octal (to prevent "00"),
        ** but leave the prefix for hex. */
        if( longvalue==0 && infop->base==8 ) flag_alternateform = 0;
#endif
        if( infop->flags & FLAG_SIGNED ){
          if( *(long*)&longvalue<0 ){
            longvalue = -*(long*)&longvalue;
            prefix = '-';
          }else if( flag_plussign )  prefix = '+';
          else if( flag_blanksign )  prefix = ' ';
          else                       prefix = 0;
        }else                        prefix = 0;
        if( flag_zeropad && precisioncharset;
          base = infop->base;
          do{                                           /* Convert to ascii */
            *(--bufpt) = cset[longvalue%base];
            longvalue = longvalue/base;
          }while( longvalue>0 );
        }
        length = &buf[etBUFSIZE-1]-bufpt;
        for(idx=precision-length; idx>0; idx--){
          *(--bufpt) = '0';                             /* Zero pad */
        }
        if( prefix ) *(--bufpt) = prefix;               /* Add sign */
        if( flag_alternateform && infop->prefix ){      /* Add "0" or "0x" */
          char *pre, x;
          pre = infop->prefix;
          if( *bufpt!=pre[0] ){
            for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x;
          }
        }
        length = &buf[etBUFSIZE-1]-bufpt;
        break;
      case etFLOAT:
      case etEXP:
      case etGENERIC:
        realvalue = va_arg(ap,double);
#ifndef etNOFLOATINGPOINT
        if( precision<0 ) precision = 6;         /* Set default precision */
        if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10;
        if( realvalue<0.0 ){
          realvalue = -realvalue;
          prefix = '-';
        }else{
          if( flag_plussign )          prefix = '+';
          else if( flag_blanksign )    prefix = ' ';
          else                         prefix = 0;
        }
        if( infop->type==etGENERIC && precision>0 ) precision--;
        rounder = 0.0;
#if 0
        /* Rounding works like BSD when the constant 0.4999 is used.  Wierd! */
        for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
#else
        /* It makes more sense to use 0.5 */
        for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1);
#endif
        if( infop->type==etFLOAT ) realvalue += rounder;
        /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
        exp = 0;
        if( realvalue>0.0 ){
          while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
          while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
          while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
          while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
          if( exp>350 || exp<-350 ){
            bufpt = "NaN";
            length = 3;
            break;
          }
        }
        bufpt = buf;
        /*
        ** If the field type is etGENERIC, then convert to either etEXP
        ** or etFLOAT, as appropriate.
        */
        flag_exp = xtype==etEXP;
        if( xtype!=etFLOAT ){
          realvalue += rounder;
          if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
        }
        if( xtype==etGENERIC ){
          flag_rtz = !flag_alternateform;
          if( exp<-4 || exp>precision ){
            xtype = etEXP;
          }else{
            precision = precision - exp;
            xtype = etFLOAT;
          }
        }else{
          flag_rtz = 0;
        }
        /*
        ** The "exp+precision" test causes output to be of type etEXP if
        ** the precision is too large to fit in buf[].
        */
        nsd = 0;
        if( xtype==etFLOAT && exp+precision0 || flag_alternateform);
          if( prefix ) *(bufpt++) = prefix;         /* Sign */
          if( exp<0 )  *(bufpt++) = '0';            /* Digits before "." */
          else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd);
          if( flag_dp ) *(bufpt++) = '.';           /* The decimal point */
          for(exp++; exp<0 && precision>0; precision--, exp++){
            *(bufpt++) = '0';
          }
          while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
          *(bufpt--) = 0;                           /* Null terminate */
          if( flag_rtz && flag_dp ){     /* Remove trailing zeros and "." */
            while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
            if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
          }
          bufpt++;                            /* point to next free slot */
        }else{    /* etEXP or etGENERIC */
          flag_dp = (precision>0 || flag_alternateform);
          if( prefix ) *(bufpt++) = prefix;   /* Sign */
          *(bufpt++) = et_getdigit(&realvalue,&nsd);  /* First digit */
          if( flag_dp ) *(bufpt++) = '.';     /* Decimal point */
          while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
          bufpt--;                            /* point to last digit */
          if( flag_rtz && flag_dp ){          /* Remove tail zeros */
            while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
            if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
          }
          bufpt++;                            /* point to next free slot */
          if( exp || flag_exp ){
            *(bufpt++) = infop->charset[0];
            if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */
            else       { *(bufpt++) = '+'; }
            if( exp>=100 ){
              *(bufpt++) = (exp/100)+'0';                /* 100's digit */
              exp %= 100;
            }
            *(bufpt++) = exp/10+'0';                     /* 10's digit */
            *(bufpt++) = exp%10+'0';                     /* 1's digit */
          }
        }
        /* The converted number is in buf[] and zero terminated. Output it.
        ** Note that the number is in the usual order, not reversed as with
        ** integer conversions. */
        length = bufpt-buf;
        bufpt = buf;

        /* Special case:  Add leading zeros if the flag_zeropad flag is
        ** set and we are not left justified */
        if( flag_zeropad && !flag_leftjustify && length < width){
          int i;
          int nPad = width - length;
          for(i=width; i>=nPad; i--){
            bufpt[i] = bufpt[i-nPad];
          }
          i = prefix!=0;
          while( nPad-- ) bufpt[i++] = '0';
          length = width;
        }
#endif
        break;
      case etSIZE:
        *(va_arg(ap,int*)) = count;
        length = width = 0;
        break;
      case etPERCENT:
        buf[0] = '%';
        bufpt = buf;
        length = 1;
        break;
      case etCHARLIT:
      case etCHARX:
        c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
        if( precision>=0 ){
          for(idx=1; idx=0 && precisionetBUFSIZE ){
            bufpt = zExtra = sqliteMalloc( n );
            if( bufpt==0 ) return -1;
          }else{
            bufpt = buf;
          }
          j = 0;
          if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
          for(i=0; (c=arg[i])!=0; i++){
            bufpt[j++] = c;
            if( c=='\'' ) bufpt[j++] = c;
          }
          if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
          bufpt[j] = 0;
          length = j;
          if( precision>=0 && precisionz, pToken->n);
        length = width = 0;
        break;
      }
      case etSRCLIST: {
        SrcList *pSrc = va_arg(ap, SrcList*);
        int k = va_arg(ap, int);
        struct SrcList_item *pItem = &pSrc->a[k];
        assert( k>=0 && knSrc );
        if( pItem->zDatabase && pItem->zDatabase[0] ){
          (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
          (*func)(arg, ".", 1);
        }
        (*func)(arg, pItem->zName, strlen(pItem->zName));
        length = width = 0;
        break;
      }
      case etERROR:
        buf[0] = '%';
        buf[1] = c;
        errorflag = 0;
        idx = 1+(c!=0);
        (*func)(arg,"%",idx);
        count += idx;
        if( c==0 ) fmt--;
        break;
    }/* End switch over the format type */
    /*
    ** The text of the conversion is pointed to by "bufpt" and is
    ** "length" characters long.  The field width is "width".  Do
    ** the output.
    */
    if( !flag_leftjustify ){
      register int nspace;
      nspace = width-length;
      if( nspace>0 ){
        count += nspace;
        while( nspace>=etSPACESIZE ){
          (*func)(arg,spaces,etSPACESIZE);
          nspace -= etSPACESIZE;
        }
        if( nspace>0 ) (*func)(arg,spaces,nspace);
      }
    }
    if( length>0 ){
      (*func)(arg,bufpt,length);
      count += length;
    }
    if( flag_leftjustify ){
      register int nspace;
      nspace = width-length;
      if( nspace>0 ){
        count += nspace;
        while( nspace>=etSPACESIZE ){
          (*func)(arg,spaces,etSPACESIZE);
          nspace -= etSPACESIZE;
        }
        if( nspace>0 ) (*func)(arg,spaces,nspace);
      }
    }
    if( zExtra ){
      sqliteFree(zExtra);
    }
  }/* End for loop over the format string */
  return errorflag ? -1 : count;
} /* End of function */


/* This structure is used to store state information about the
** write to memory that is currently in progress.
*/
struct sgMprintf {
  char *zBase;     /* A base allocation */
  char *zText;     /* The string collected so far */
  int  nChar;      /* Length of the string so far */
  int  nTotal;     /* Output size if unconstrained */
  int  nAlloc;     /* Amount of space allocated in zText */
  void *(*xRealloc)(void*,int);  /* Function used to realloc memory */
};
printf.c164
STATIC VOIDmout(void *arg, const char *zNewText, int nNewChar)
static void mout(void *arg, const char *zNewText, int nNewChar){
  struct sgMprintf *pM = (struct sgMprintf*)arg;
  pM->nTotal += nNewChar;
  if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
    if( pM->xRealloc==0 ){
      nNewChar =  pM->nAlloc - pM->nChar - 1;
    }else{
      pM->nAlloc = pM->nChar + nNewChar*2 + 1;
      if( pM->zText==pM->zBase ){
        pM->zText = pM->xRealloc(0, pM->nAlloc);
        if( pM->zText && pM->nChar ){
          memcpy(pM->zText, pM->zBase, pM->nChar);
        }
      }else{
        pM->zText = pM->xRealloc(pM->zText, pM->nAlloc);
      }
    }
  }
  if( pM->zText ){
    if( nNewChar>0 ){
      memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
      pM->nChar += nNewChar;
    }
    pM->zText[pM->nChar] = 0;
  }
}
printf.c653
STATIC CHAR *BASE_VPRINTF( VOID *(*XREALLOC(void*,int), int useInternal, char *zInitBuf, int nInitBuf, const char *zFormat, va_list ap )
static char *base_vprintf(
  void *(*xRealloc)(void*,int),   /* Routine to realloc memory. May be NULL */
  int useInternal,                /* Use internal %-conversions if true */
  char *zInitBuf,                 /* Initially write here, before mallocing */
  int nInitBuf,                   /* Size of zInitBuf[] */
  const char *zFormat,            /* format string */
  va_list ap                      /* arguments */
){
  struct sgMprintf sM;
  sM.zBase = sM.zText = zInitBuf;
  sM.nChar = sM.nTotal = 0;
  sM.nAlloc = nInitBuf;
  sM.xRealloc = xRealloc;
  vxprintf(mout, &sM, useInternal, zFormat, ap);
  if( xRealloc ){
    if( sM.zText==sM.zBase ){
      sM.zText = xRealloc(0, sM.nChar+1);
      memcpy(sM.zText, sM.zBase, sM.nChar+1);
    }else if( sM.nAlloc>sM.nChar+10 ){
      sM.zText = xRealloc(sM.zText, sM.nChar+1);
    }
  }
  return sM.zText;
}
printf.c686
STATIC VOID printf_realloc(void *old, int size)
static void *printf_realloc(void *old, int size){
  return sqliteRealloc(old,size);
}
printf.c715
CHAR sqliteVMPrintf(const char *zFormat, va_list ap)
char *sqliteVMPrintf(const char *zFormat, va_list ap){
  char zBase[1000];
  return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
}
printf.c722
CHAR sqliteMPrintf(const char *zFormat, ...)
char *sqliteMPrintf(const char *zFormat, ...){
  va_list ap;
  char *z;
  char zBase[1000];
  va_start(ap, zFormat);
  z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
  va_end(ap);
  return z;
}
printf.c731
CHAR sqlite_mprintf(const char *zFormat, ...)
char *sqlite_mprintf(const char *zFormat, ...){
  va_list ap;
  char *z;
  char zBuf[200];

  va_start(ap,zFormat);
  z = base_vprintf((void*(*)(void*,int))realloc, 0, 
                   zBuf, sizeof(zBuf), zFormat, ap);
  va_end(ap);
  return z;
}
printf.c745
CHAR sqlite_vmprintf(const char *zFormat, va_list ap)
char *sqlite_vmprintf(const char *zFormat, va_list ap){
  char zBuf[200];
  return base_vprintf((void*(*)(void*,int))realloc, 0,
                      zBuf, sizeof(zBuf), zFormat, ap);
}
printf.c761
CHAR sqlite_snprintf(int n, char *zBuf, const char *zFormat, ...)
char *sqlite_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;

  va_start(ap,zFormat);
  z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
  va_end(ap);
  return z;
}
printf.c769
INTsqlite_exec_printf( sqlite *db, const char *sqlFormat, sqlite_callback xCallback, void *pArg, char **errmsg, ... )
int sqlite_exec_printf(
  sqlite *db,                   /* An open database */
  const char *sqlFormat,        /* printf-style format string for the SQL */
  sqlite_callback xCallback,    /* Callback function */
  void *pArg,                   /* 1st argument to callback function */
  char **errmsg,                /* Error msg written here */
  ...                           /* Arguments to the format string. */
){
  va_list ap;
  int rc;

  va_start(ap, errmsg);
  rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap);
  va_end(ap);
  return rc;
}
printf.c785
INTsqlite_exec_vprintf( sqlite *db, const char *sqlFormat, sqlite_callback xCallback, void *pArg, char **errmsg, va_list ap )
int sqlite_exec_vprintf(
  sqlite *db,                   /* An open database */
  const char *sqlFormat,        /* printf-style format string for the SQL */
  sqlite_callback xCallback,    /* Callback function */
  void *pArg,                   /* 1st argument to callback function */
  char **errmsg,                /* Error msg written here */
  va_list ap                    /* Arguments to the format string. */
){
  char *zSql;
  int rc;

  zSql = sqlite_vmprintf(sqlFormat, ap);
  rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg);
  free(zSql);
  return rc;
}
printf.c809
INTsqlite_get_table_printf( sqlite *db, const char *sqlFormat, char ***resultp, int *nrow, int *ncol, char **errmsg, ... )
int sqlite_get_table_printf(
  sqlite *db,            /* An open database */
  const char *sqlFormat, /* printf-style format string for the SQL */
  char ***resultp,       /* Result written to a char *[]  that this points to */
  int *nrow,             /* Number of result rows written here */
  int *ncol,             /* Number of result columns written here */
  char **errmsg,         /* Error msg written here */
  ...                    /* Arguments to the format string */
){
  va_list ap;
  int rc;

  va_start(ap, errmsg);
  rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap);
  va_end(ap);
  return rc;
}
printf.c825
INTsqlite_get_table_vprintf( sqlite *db, const char *sqlFormat, char ***resultp, int *nrow, int *ncolumn, char **errmsg, va_list ap )
int sqlite_get_table_vprintf(
  sqlite *db,            /* An open database */
  const char *sqlFormat, /* printf-style format string for the SQL */
  char ***resultp,       /* Result written to a char *[]  that this points to */
  int *nrow,             /* Number of result rows written here */
  int *ncolumn,          /* Number of result columns written here */
  char **errmsg,         /* Error msg written here */
  va_list ap             /* Arguments to the format string */
){
  char *zSql;
  int rc;

  zSql = sqlite_vmprintf(sqlFormat, ap);
  rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg);
  free(zSql);
  return rc;
}
printf.c842
random.c
TypeFunctionSourceLine
STATIC INTrandomByte()
static int randomByte(){
  unsigned char t;

  /* All threads share a single random number generator.
  ** This structure is the current state of the generator.
  */
  static struct {
    unsigned char isInit;          /* True if initialized */
    unsigned char i, j;            /* State variables */
    unsigned char s[256];          /* State variables */
  } prng;

  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
  ** not need to contain a lot of randomness since we are not
  ** trying to do secure encryption or anything like that...
  **
  ** Nothing in this file or anywhere else in SQLite does any kind of
  ** encryption.  The RC4 algorithm is being used as a PRNG (pseudo-random
  ** number generator) not as an encryption device.
  */
  if( !prng.isInit ){
    int i;
    char k[256];
    prng.j = 0;
    prng.i = 0;
    sqliteOsRandomSeed(k);
    for(i=0; i<256; i++){
      prng.s[i] = i;
    }
    for(i=0; i<256; i++){
      prng.j += prng.s[i] + k[i];
      t = prng.s[prng.j];
      prng.s[prng.j] = prng.s[i];
      prng.s[i] = t;
    }
    prng.isInit = 1;
  }

  /* Generate and return single random byte
  */
  prng.i++;
  t = prng.s[prng.i];
  prng.j += t;
  prng.s[prng.i] = prng.s[prng.j];
  prng.s[prng.j] = t;
  t += prng.s[prng.i];
  return prng.s[t];
}
random.c24
VOIDsqliteRandomness(int N, void *pBuf)
void sqliteRandomness(int N, void *pBuf){
  unsigned char *zBuf = pBuf;
  sqliteOsEnterMutex();
  while( N-- ){
    *(zBuf++) = randomByte();
  }
  sqliteOsLeaveMutex();
}
random.c87
select.c
TypeFunctionSourceLine
SELECT sqliteSelectNew( ExprList *pEList, SrcList *pSrc, Expr *pWhere, ExprList *pGroupBy, Expr *pHaving, ExprList *pOrderBy, int isDistinct, int nLimit, int nOffset )
Select *sqliteSelectNew(
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct,       /* true if the DISTINCT keyword is present */
  int nLimit,           /* LIMIT value.  -1 means not used */
  int nOffset           /* OFFSET value.  0 means no offset */
){
  Select *pNew;
  pNew = sqliteMalloc( sizeof(*pNew) );
  if( pNew==0 ){
    sqliteExprListDelete(pEList);
    sqliteSrcListDelete(pSrc);
    sqliteExprDelete(pWhere);
    sqliteExprListDelete(pGroupBy);
    sqliteExprDelete(pHaving);
    sqliteExprListDelete(pOrderBy);
  }else{
    if( pEList==0 ){
      pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
    }
    pNew->pEList = pEList;
    pNew->pSrc = pSrc;
    pNew->pWhere = pWhere;
    pNew->pGroupBy = pGroupBy;
    pNew->pHaving = pHaving;
    pNew->pOrderBy = pOrderBy;
    pNew->isDistinct = isDistinct;
    pNew->op = TK_SELECT;
    pNew->nLimit = nLimit;
    pNew->nOffset = nOffset;
    pNew->iLimit = -1;
    pNew->iOffset = -1;
  }
  return pNew;
}
select.c20
INTsqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC)
int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
  int jointype = 0;
  Token *apAll[3];
  Token *p;
  static struct {
    const char *zKeyword;
    int nChar;
    int code;
  } keywords[] = {
    { "natural", 7, JT_NATURAL },
    { "left",    4, JT_LEFT|JT_OUTER },
    { "right",   5, JT_RIGHT|JT_OUTER },
    { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
    { "outer",   5, JT_OUTER },
    { "inner",   5, JT_INNER },
    { "cross",   5, JT_INNER },
  };
  int i, j;
  apAll[0] = pA;
  apAll[1] = pB;
  apAll[2] = pC;
  for(i=0; i<3 && apAll[i]; i++){
    p = apAll[i];
    for(j=0; jn==keywords[j].nChar 
          && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
        jointype |= keywords[j].code;
        break;
      }
    }
    if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
      jointype |= JT_ERROR;
      break;
    }
  }
  if(
     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
     (jointype & JT_ERROR)!=0
  ){
    static Token dummy = { 0, 0 };
    char *zSp1 = " ", *zSp2 = " ";
    if( pB==0 ){ pB = &dummy; zSp1 = 0; }
    if( pC==0 ){ pC = &dummy; zSp2 = 0; }
    sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
       pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
    pParse->nErr++;
    jointype = JT_INNER;
  }else if( jointype & JT_RIGHT ){
    sqliteErrorMsg(pParse, 
      "RIGHT and FULL OUTER JOINs are not currently supported");
    jointype = JT_INNER;
  }
  return jointype;
}
select.c64
STATIC INTcolumnIndex(Table *pTab, const char *zCol)
static int columnIndex(Table *pTab, const char *zCol){
  int i;
  for(i=0; inCol; i++){
    if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
  }
  return -1;
}
select.c135
STATIC VOIDaddWhereTerm( const char *zCol, const Table *pTab1, const Table *pTab2, Expr **ppExpr )
static void addWhereTerm(
  const char *zCol,        /* Name of the column */
  const Table *pTab1,      /* First table */
  const Table *pTab2,      /* Second table */
  Expr **ppExpr            /* Add the equality term to this expression */
){
  Token dummy;
  Expr *pE1a, *pE1b, *pE1c;
  Expr *pE2a, *pE2b, *pE2c;
  Expr *pE;

  dummy.z = zCol;
  dummy.n = strlen(zCol);
  dummy.dyn = 0;
  pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
  pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
  dummy.z = pTab1->zName;
  dummy.n = strlen(dummy.z);
  pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
  dummy.z = pTab2->zName;
  dummy.n = strlen(dummy.z);
  pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
  pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
  pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
  pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
  ExprSetProperty(pE, EP_FromJoin);
  if( *ppExpr ){
    *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
  }else{
    *ppExpr = pE;
  }
}
select.c147
STATIC VOIDsetJoinExpr(Expr *p)
static void setJoinExpr(Expr *p){
  while( p ){
    ExprSetProperty(p, EP_FromJoin);
    setJoinExpr(p->pLeft);
    p = p->pRight;
  } 
}
select.c184
STATIC INTsqliteProcessJoin(Parse *pParse, Select *p)
static int sqliteProcessJoin(Parse *pParse, Select *p){
  SrcList *pSrc;
  int i, j;
  pSrc = p->pSrc;
  for(i=0; inSrc-1; i++){
    struct SrcList_item *pTerm = &pSrc->a[i];
    struct SrcList_item *pOther = &pSrc->a[i+1];

    if( pTerm->pTab==0 || pOther->pTab==0 ) continue;

    /* When the NATURAL keyword is present, add WHERE clause terms for
    ** every column that the two tables have in common.
    */
    if( pTerm->jointype & JT_NATURAL ){
      Table *pTab;
      if( pTerm->pOn || pTerm->pUsing ){
        sqliteErrorMsg(pParse, "a NATURAL join may not have "
           "an ON or USING clause", 0);
        return 1;
      }
      pTab = pTerm->pTab;
      for(j=0; jnCol; j++){
        if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
          addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
        }
      }
    }

    /* Disallow both ON and USING clauses in the same join
    */
    if( pTerm->pOn && pTerm->pUsing ){
      sqliteErrorMsg(pParse, "cannot have both ON and USING "
        "clauses in the same join");
      return 1;
    }

    /* Add the ON clause to the end of the WHERE clause, connected by
    ** and AND operator.
    */
    if( pTerm->pOn ){
      setJoinExpr(pTerm->pOn);
      if( p->pWhere==0 ){
        p->pWhere = pTerm->pOn;
      }else{
        p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
      }
      pTerm->pOn = 0;
    }

    /* Create extra terms on the WHERE clause for each column named
    ** in the USING clause.  Example: If the two tables to be joined are 
    ** A and B and the USING clause names X, Y, and Z, then add this
    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
    ** Report an error if any column mentioned in the USING clause is
    ** not contained in both tables to be joined.
    */
    if( pTerm->pUsing ){
      IdList *pList;
      int j;
      assert( inSrc-1 );
      pList = pTerm->pUsing;
      for(j=0; jnId; j++){
        if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
            columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
          sqliteErrorMsg(pParse, "cannot join using column %s - column "
            "not present in both tables", pList->a[j].zName);
          return 1;
        }
        addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
      }
    }
  }
  return 0;
}
select.c202
VOIDsqliteSelectDelete(Select *p)
void sqliteSelectDelete(Select *p){
  if( p==0 ) return;
  sqliteExprListDelete(p->pEList);
  sqliteSrcListDelete(p->pSrc);
  sqliteExprDelete(p->pWhere);
  sqliteExprListDelete(p->pGroupBy);
  sqliteExprDelete(p->pHaving);
  sqliteExprListDelete(p->pOrderBy);
  sqliteSelectDelete(p->pPrior);
  sqliteFree(p->zSelect);
  sqliteFree(p);
}
select.c284
STATIC VOIDsqliteAggregateInfoReset(Parse *pParse)
static void sqliteAggregateInfoReset(Parse *pParse){
  sqliteFree(pParse->aAgg);
  pParse->aAgg = 0;
  pParse->nAgg = 0;
  pParse->useAgg = 0;
}
select.c300
STATIC VOIDpushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy)
static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
  char *zSortOrder;
  int i;
  zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
  if( zSortOrder==0 ) return;
  for(i=0; inExpr; i++){
    int order = pOrderBy->a[i].sortOrder;
    int type;
    int c;
    if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
      type = SQLITE_SO_TEXT;
    }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
      type = SQLITE_SO_NUM;
    }else if( pParse->db->file_format>=4 ){
      type = sqliteExprType(pOrderBy->a[i].pExpr);
    }else{
      type = SQLITE_SO_NUM;
    }
    if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
      c = type==SQLITE_SO_TEXT ? 'A' : '+';
    }else{
      c = type==SQLITE_SO_TEXT ? 'D' : '-';
    }
    zSortOrder[i] = c;
    sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
  }
  zSortOrder[pOrderBy->nExpr] = 0;
  sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
  sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
}
select.c310
VOIDsqliteAddKeyType(Vdbe *v, ExprList *pEList)
void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
  int nColumn = pEList->nExpr;
  char *zType = sqliteMalloc( nColumn+1 );
  int i;
  if( zType==0 ) return;
  for(i=0; ia[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
  }
  zType[i] = 0;
  sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
}
select.c345
STATIC VOIDcodeLimiter( Vdbe *v, Select *p, int iContinue, int iBreak, int nPop )
static void codeLimiter(
  Vdbe *v,          /* Generate code into this VM */
  Select *p,        /* The SELECT statement being coded */
  int iContinue,    /* Jump here to skip the current record */
  int iBreak,       /* Jump here to end the loop */
  int nPop          /* Number of times to pop stack when jumping */
){
  if( p->iOffset>=0 ){
    int addr = sqliteVdbeCurrentAddr(v) + 2;
    if( nPop>0 ) addr++;
    sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr);
    if( nPop>0 ){
      sqliteVdbeAddOp(v, OP_Pop, nPop, 0);
    }
    sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
  }
  if( p->iLimit>=0 ){
    sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
  }
}
select.c367
STATIC INTselectInnerLoop( Parse *pParse, Select *p, ExprList *pEList, int srcTab, int nColumn, ExprList *pOrderBy, int distinct, int eDest, int iParm, int iContinue, int iBreak )
static int selectInnerLoop(
  Parse *pParse,          /* The parser context */
  Select *p,              /* The complete select statement being coded */
  ExprList *pEList,       /* List of values being extracted */
  int srcTab,             /* Pull data from this table */
  int nColumn,            /* Number of columns in the source table */
  ExprList *pOrderBy,     /* If not NULL, sort results using this key */
  int distinct,           /* If >=0, make sure results are distinct */
  int eDest,              /* How to dispose of the results */
  int iParm,              /* An argument to the disposal method */
  int iContinue,          /* Jump here to continue with next row */
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;        /* True if the DISTINCT keyword is present */

  if( v==0 ) return 0;
  assert( pEList!=0 );

  /* If there was a LIMIT clause on the SELECT statement, then do the check
  ** to see if this row should be output.
  */
  hasDistinct = distinct>=0 && pEList && pEList->nExpr>0;
  if( pOrderBy==0 && !hasDistinct ){
    codeLimiter(v, p, iContinue, iBreak, 0);
  }

  /* Pull the requested columns.
  */
  if( nColumn>0 ){
    for(i=0; inExpr;
    for(i=0; inExpr; i++){
      sqliteExprCode(pParse, pEList->a[i].pExpr);
    }
  }

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){
#if NULL_ALWAYS_DISTINCT
    sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
#endif
    sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
    if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
    sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
    sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
    sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
    sqliteVdbeAddOp(v, OP_String, 0, 0);
    sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
    if( pOrderBy==0 ){
      codeLimiter(v, p, iContinue, iBreak, nColumn);
    }
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
    case SRT_Union: {
      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
      break;
    }

    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_TempTable: {
      sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
      if( pOrderBy ){
        pushOntoSorter(pParse, v, pOrderBy);
      }else{
        sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
        sqliteVdbeAddOp(v, OP_Pull, 1, 0);
        sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
      }
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      int addr;
      addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
      sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
      sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
      break;
    }

    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int addr1 = sqliteVdbeCurrentAddr(v);
      int addr2;
      assert( nColumn==1 );
      sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
      if( pOrderBy ){
        pushOntoSorter(pParse, v, pOrderBy);
      }else{
        sqliteVdbeAddOp(v, OP_String, 0, 0);
        sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
      }
      sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nColumn==1 );
      if( pOrderBy ){
        pushOntoSorter(pParse, v, pOrderBy);
      }else{
        sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
        sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
      }
      break;
    }

    /* Send the data to the callback function.
    */
    case SRT_Callback:
    case SRT_Sorter: {
      if( pOrderBy ){
        sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
        pushOntoSorter(pParse, v, pOrderBy);
      }else{
        assert( eDest==SRT_Callback );
        sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
      }
      break;
    }

    /* Invoke a subroutine to handle the results.  The subroutine itself
    ** is responsible for popping the results off of the stack.
    */
    case SRT_Subroutine: {
      if( pOrderBy ){
        sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
        pushOntoSorter(pParse, v, pOrderBy);
      }else{
        sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
      }
      break;
    }

    /* Discard the results.  This is used for SELECT statements inside
    ** the body of a TRIGGER.  The purpose of such selects is to call
    ** user-defined functions that have side effects.  We do not care
    ** about the actual results of the select.
    */
    default: {
      assert( eDest==SRT_Discard );
      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
      break;
    }
  }
  return 0;
}
select.c391
STATIC VOIDgenerateSortTail( Select *p, Vdbe *v, int nColumn, int eDest, int iParm )
static void generateSortTail(
  Select *p,       /* The SELECT statement */
  Vdbe *v,         /* Generate code into this VDBE */
  int nColumn,     /* Number of columns of data */
  int eDest,       /* Write the sorted results here */
  int iParm        /* Optional parameter associated with eDest */
){
  int end1 = sqliteVdbeMakeLabel(v);
  int end2 = sqliteVdbeMakeLabel(v);
  int addr;
  if( eDest==SRT_Sorter ) return;
  sqliteVdbeAddOp(v, OP_Sort, 0, 0);
  addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
  codeLimiter(v, p, addr, end2, 1);
  switch( eDest ){
    case SRT_Callback: {
      sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
      break;
    }
    case SRT_Table:
    case SRT_TempTable: {
      sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
      sqliteVdbeAddOp(v, OP_Pull, 1, 0);
      sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
      break;
    }
    case SRT_Set: {
      assert( nColumn==1 );
      sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
      sqliteVdbeAddOp(v, OP_Pop, 1, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
      sqliteVdbeAddOp(v, OP_Goto, 0, end1);
      break;
    }
    case SRT_Subroutine: {
      int i;
      for(i=0; i
select.c576
STATIC VOIDgenerateColumnTypes( Parse *pParse, SrcList *pTabList, ExprList *pEList )
static void generateColumnTypes(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;
  for(i=0; inExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    char *zType = 0;
    if( p==0 ) continue;
    if( p->op==TK_COLUMN && pTabList ){
      Table *pTab;
      int iCol = p->iColumn;
      for(j=0; jnSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
      assert( jnSrc );
      pTab = pTabList->a[j].pTab;
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iColnCol) );
      if( iCol<0 ){
        zType = "INTEGER";
      }else{
        zType = pTab->aCol[iCol].zType;
      }
    }else{
      if( sqliteExprType(p)==SQLITE_SO_TEXT ){
        zType = "TEXT";
      }else{
        zType = "NUMERIC";
      }
    }
    sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
  }
}
select.c644
STATIC VOIDgenerateColumnNames( Parse *pParse, SrcList *pTabList, ExprList *pEList )
static void generateColumnNames(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;
  sqlite *db = pParse->db;
  int fullNames, shortNames;

  assert( v!=0 );
  if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
  pParse->colNamesSet = 1;
  fullNames = (db->flags & SQLITE_FullColNames)!=0;
  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  for(i=0; inExpr; i++){
    Expr *p;
    int p2 = i==pEList->nExpr-1;
    p = pEList->a[i].pExpr;
    if( p==0 ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
      continue;
    }
    if( p->op==TK_COLUMN && pTabList ){
      Table *pTab;
      char *zCol;
      int iCol = p->iColumn;
      for(j=0; jnSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
      assert( jnSrc );
      pTab = pTabList->a[j].pTab;
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iColnCol) );
      if( iCol<0 ){
        zCol = "_ROWID_";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }
      if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
        int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
        sqliteVdbeCompressSpace(v, addr);
      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
        char *zName = 0;
        char *zTab;
 
        zTab = pTabList->a[j].zAlias;
        if( fullNames || zTab==0 ) zTab = pTab->zName;
        sqliteSetString(&zName, zTab, ".", zCol, 0);
        sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
      }else{
        sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
      }
    }else if( p->span.z && p->span.z[0] ){
      int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
      sqliteVdbeCompressSpace(v, addr);
    }else{
      char zName[30];
      assert( p->op!=TK_COLUMN || pTabList==0 );
      sprintf(zName, "column%d", i+1);
      sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
    }
  }
}
select.c694
STATIC CONST CHAR selectOpName(int id)
static const char *selectOpName(int id){
  char *z;
  switch( id ){
    case TK_ALL:       z = "UNION ALL";   break;
    case TK_INTERSECT: z = "INTERSECT";   break;
    case TK_EXCEPT:    z = "EXCEPT";      break;
    default:           z = "UNION";       break;
  }
  return z;
}

/*
** Forward declaration
*/
static int fillInColumnList(Parse*, Select*);
select.c764
TABLE sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect)
Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
  Table *pTab;
  int i, j;
  ExprList *pEList;
  Column *aCol;

  if( fillInColumnList(pParse, pSelect) ){
    return 0;
  }
  pTab = sqliteMalloc( sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
  pEList = pSelect->pEList;
  pTab->nCol = pEList->nExpr;
  assert( pTab->nCol>0 );
  pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
  for(i=0; inCol; i++){
    Expr *p, *pR;
    if( pEList->a[i].zName ){
      aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
    }else if( (p=pEList->a[i].pExpr)->op==TK_DOT 
               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
      int cnt;
      sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
      for(j=cnt=0; jtoken.z, pR->token.n, zBuf, n,0);
          j = -1;
        }
      }
    }else if( p->span.z && p->span.z[0] ){
      sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
    }else{
      char zBuf[30];
      sprintf(zBuf, "column%d", i+1);
      aCol[i].zName = sqliteStrDup(zBuf);
    }
    sqliteDequote(aCol[i].zName);
  }
  pTab->iPKey = -1;
  return pTab;
}
select.c783
STATIC INTfillInColumnList(Parse *pParse, Select *p)
static int fillInColumnList(Parse *pParse, Select *p){
  int i, j, k, rc;
  SrcList *pTabList;
  ExprList *pEList;
  Table *pTab;

  if( p==0 || p->pSrc==0 ) return 1;
  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Look up every table in the table list.
  */
  for(i=0; inSrc; i++){
    if( pTabList->a[i].pTab ){
      /* This routine has run before!  No need to continue */
      return 0;
    }
    if( pTabList->a[i].zName==0 ){
      /* A sub-query in the FROM clause of a SELECT */
      assert( pTabList->a[i].pSelect!=0 );
      if( pTabList->a[i].zAlias==0 ){
        char zFakeName[60];
        sprintf(zFakeName, "sqlite_subquery_%p_",
           (void*)pTabList->a[i].pSelect);
        sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
      }
      pTabList->a[i].pTab = pTab = 
        sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
                                        pTabList->a[i].pSelect);
      if( pTab==0 ){
        return 1;
      }
      /* The isTransient flag indicates that the Table structure has been
      ** dynamically allocated and may be freed at any time.  In other words,
      ** pTab is not pointing to a persistent table structure that defines
      ** part of the schema. */
      pTab->isTransient = 1;
    }else{
      /* An ordinary table or view name in the FROM clause */
      pTabList->a[i].pTab = pTab = 
        sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
      if( pTab==0 ){
        return 1;
      }
      if( pTab->pSelect ){
        /* We reach here if the named table is a really a view */
        if( sqliteViewGetColumnNames(pParse, pTab) ){
          return 1;
        }
        /* If pTabList->a[i].pSelect!=0 it means we are dealing with a
        ** view within a view.  The SELECT structure has already been
        ** copied by the outer view so we can skip the copy step here
        ** in the inner view.
        */
        if( pTabList->a[i].pSelect==0 ){
          pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
        }
      }
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  if( sqliteProcessJoin(pParse, p) ) return 1;

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ALL operator for each "*" that it found in the column list.
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; knExpr; k++){
    Expr *pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
  }
  rc = 0;
  if( knExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    for(k=0; knExpr; k++){
      Expr *pE = a[k].pExpr;
      if( pE->op!=TK_ALL &&
           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
        pNew->a[pNew->nExpr-1].zName = a[k].zName;
        a[k].pExpr = 0;
        a[k].zName = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName;           /* text of name of TABLE */
        if( pE->op==TK_DOT && pE->pLeft ){
          zTName = sqliteTableNameFromToken(&pE->pLeft->token);
        }else{
          zTName = 0;
        }
        for(i=0; inSrc; i++){
          Table *pTab = pTabList->a[i].pTab;
          char *zTabName = pTabList->a[i].zAlias;
          if( zTabName==0 || zTabName[0]==0 ){ 
            zTabName = pTab->zName;
          }
          if( zTName && (zTabName==0 || zTabName[0]==0 || 
                 sqliteStrICmp(zTName, zTabName)!=0) ){
            continue;
          }
          tableSeen = 1;
          for(j=0; jnCol; j++){
            Expr *pExpr, *pLeft, *pRight;
            char *zName = pTab->aCol[j].zName;

            if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
                columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
              /* In a NATURAL join, omit the join columns from the 
              ** table on the right */
              continue;
            }
            if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
              /* In a join with a USING clause, omit columns in the
              ** using clause from the table on the right. */
              continue;
            }
            pRight = sqliteExpr(TK_ID, 0, 0, 0);
            if( pRight==0 ) break;
            pRight->token.z = zName;
            pRight->token.n = strlen(zName);
            pRight->token.dyn = 0;
            if( zTabName && pTabList->nSrc>1 ){
              pLeft = sqliteExpr(TK_ID, 0, 0, 0);
              pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
              if( pExpr==0 ) break;
              pLeft->token.z = zTabName;
              pLeft->token.n = strlen(zTabName);
              pLeft->token.dyn = 0;
              sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
              pExpr->span.n = strlen(pExpr->span.z);
              pExpr->span.dyn = 1;
              pExpr->token.z = 0;
              pExpr->token.n = 0;
              pExpr->token.dyn = 0;
            }else{
              pExpr = pRight;
              pExpr->span = pExpr->token;
            }
            pNew = sqliteExprListAppend(pNew, pExpr, 0);
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqliteErrorMsg(pParse, "no such table: %s", zTName);
          }else{
            sqliteErrorMsg(pParse, "no tables specified");
          }
          rc = 1;
        }
        sqliteFree(zTName);
      }
    }
    sqliteExprListDelete(pEList);
    p->pEList = pNew;
  }
  return rc;
}
select.c836
VOIDsqliteSelectUnbind(Select *p)
void sqliteSelectUnbind(Select *p){
  int i;
  SrcList *pSrc = p->pSrc;
  Table *pTab;
  if( p==0 ) return;
  for(i=0; inSrc; i++){
    if( (pTab = pSrc->a[i].pTab)!=0 ){
      if( pTab->isTransient ){
        sqliteDeleteTable(0, pTab);
      }
      pSrc->a[i].pTab = 0;
      if( pSrc->a[i].pSelect ){
        sqliteSelectUnbind(pSrc->a[i].pSelect);
      }
    }
  }
}
select.c1036
STATIC INTmatchOrderbyToColumn( Parse *pParse, Select *pSelect, ExprList *pOrderBy, int iTable, int mustComplete )
static int matchOrderbyToColumn(
  Parse *pParse,          /* A place to leave error messages */
  Select *pSelect,        /* Match to result columns of this SELECT */
  ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
  int iTable,             /* Insert this value in iTable */
  int mustComplete        /* If TRUE all ORDER BYs must match */
){
  int nErr = 0;
  int i, j;
  ExprList *pEList;

  if( pSelect==0 || pOrderBy==0 ) return 1;
  if( mustComplete ){
    for(i=0; inExpr; i++){ pOrderBy->a[i].done = 0; }
  }
  if( fillInColumnList(pParse, pSelect) ){
    return 1;
  }
  if( pSelect->pPrior ){
    if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
      return 1;
    }
  }
  pEList = pSelect->pEList;
  for(i=0; inExpr; i++){
    Expr *pE = pOrderBy->a[i].pExpr;
    int iCol = -1;
    if( pOrderBy->a[i].done ) continue;
    if( sqliteExprIsInteger(pE, &iCol) ){
      if( iCol<=0 || iCol>pEList->nExpr ){
        sqliteErrorMsg(pParse,
          "ORDER BY position %d should be between 1 and %d",
          iCol, pEList->nExpr);
        nErr++;
        break;
      }
      if( !mustComplete ) continue;
      iCol--;
    }
    for(j=0; iCol<0 && jnExpr; j++){
      if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
        char *zName, *zLabel;
        zName = pEList->a[j].zName;
        assert( pE->token.z );
        zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
        sqliteDequote(zLabel);
        if( sqliteStrICmp(zName, zLabel)==0 ){ 
          iCol = j;
        }
        sqliteFree(zLabel);
      }
      if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
        iCol = j;
      }
    }
    if( iCol>=0 ){
      pE->op = TK_COLUMN;
      pE->iColumn = iCol;
      pE->iTable = iTable;
      pOrderBy->a[i].done = 1;
    }
    if( iCol<0 && mustComplete ){
      sqliteErrorMsg(pParse,
        "ORDER BY term number %d does not match any result column", i+1);
      nErr++;
      break;
    }
  }
  return nErr;  
}
select.c1067
VDBE sqliteGetVdbe(Parse *pParse)
Vdbe *sqliteGetVdbe(Parse *pParse){
  Vdbe *v = pParse->pVdbe;
  if( v==0 ){
    v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
  }
  return v;
}
select.c1158
STATIC VOIDmultiSelectSortOrder(Select *p, ExprList *pOrderBy)
static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
  int i;
  ExprList *pEList;
  if( pOrderBy==0 ) return;
  if( p==0 ){
    for(i=0; inExpr; i++){
      pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
    }
    return;
  }
  multiSelectSortOrder(p->pPrior, pOrderBy);
  pEList = p->pEList;
  for(i=0; inExpr; i++){
    Expr *pE = pOrderBy->a[i].pExpr;
    if( pE->dataType==SQLITE_SO_NUM ) continue;
    assert( pE->iColumn>=0 );
    if( pEList->nExpr>pE->iColumn ){
      pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
    }
  }
}
select.c1170
STATIC VOIDcomputeLimitRegisters(Parse *pParse, Select *p)
static void computeLimitRegisters(Parse *pParse, Select *p){
  /* 
  ** If the comparison is p->nLimit>0 then "LIMIT 0" shows
  ** all rows.  It is the same as no limit. If the comparision is
  ** p->nLimit>=0 then "LIMIT 0" show no rows at all.
  ** "LIMIT -1" always shows all rows.  There is some
  ** contraversy about what the correct behavior should be.
  ** The current implementation interprets "LIMIT 0" to mean
  ** no rows.
  */
  if( p->nLimit>=0 ){
    int iMem = pParse->nMem++;
    Vdbe *v = sqliteGetVdbe(pParse);
    if( v==0 ) return;
    sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
    sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
    p->iLimit = iMem;
  }
  if( p->nOffset>0 ){
    int iMem = pParse->nMem++;
    Vdbe *v = sqliteGetVdbe(pParse);
    if( v==0 ) return;
    sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
    sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
    p->iOffset = iMem;
  }
}
select.c1219
STATIC INTmultiSelect(Parse *pParse, Select *p, int eDest, int iParm)
static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
  int rc;             /* Success code from a subroutine */
  Select *pPrior;     /* Another SELECT immediately to our left */
  Vdbe *v;            /* Generate code to this VDBE */

  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last SELECT in the series may have an ORDER BY or LIMIT.
  */
  if( p==0 || p->pPrior==0 ) return 1;
  pPrior = p->pPrior;
  if( pPrior->pOrderBy ){
    sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
      selectOpName(p->op));
    return 1;
  }
  if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
    sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
      selectOpName(p->op));
    return 1;
  }

  /* Make sure we have a valid query engine.  If not, create a new one.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return 1;

  /* Create the destination temporary table if necessary
  */
  if( eDest==SRT_TempTable ){
    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
    eDest = SRT_Table;
  }

  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      if( p->pOrderBy==0 ){
        pPrior->nLimit = p->nLimit;
        pPrior->nOffset = p->nOffset;
        rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
        if( rc ) return rc;
        p->pPrior = 0;
        p->iLimit = pPrior->iLimit;
        p->iOffset = pPrior->iOffset;
        p->nLimit = -1;
        p->nOffset = 0;
        rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
        p->pPrior = pPrior;
        if( rc ) return rc;
        break;
      }
      /* For UNION ALL ... ORDER BY fall through to the next case */
    }
    case TK_EXCEPT:
    case TK_UNION: {
      int unionTab;    /* Cursor number of the temporary table holding result */
      int op;          /* One of the SRT_ operations to apply to self */
      int priorOp;     /* The SRT_ operation to apply to prior selects */
      int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
      ExprList *pOrderBy;  /* The ORDER BY clause for the right SELECT */

      priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
      if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
        /* We can reuse a temporary table generated by a SELECT to our
        ** right.
        */
        unionTab = iParm;
      }else{
        /* We will need to create our own temporary table to hold the
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        if( p->pOrderBy 
        && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
          return 1;
        }
        if( p->op!=TK_ALL ){
          sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
          sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
        }else{
          sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
        }
      }

      /* Code the SELECT statements to our left
      */
      rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
      if( rc ) return rc;

      /* Code the current SELECT statement
      */
      switch( p->op ){
         case TK_EXCEPT:  op = SRT_Except;   break;
         case TK_UNION:   op = SRT_Union;    break;
         case TK_ALL:     op = SRT_Table;    break;
      }
      p->pPrior = 0;
      pOrderBy = p->pOrderBy;
      p->pOrderBy = 0;
      nLimit = p->nLimit;
      p->nLimit = -1;
      nOffset = p->nOffset;
      p->nOffset = 0;
      rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
      p->pPrior = pPrior;
      p->pOrderBy = pOrderBy;
      p->nLimit = nLimit;
      p->nOffset = nOffset;
      if( rc ) return rc;

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */      
      if( eDest!=priorOp || unionTab!=iParm ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( eDest==SRT_Callback ){
          generateColumnNames(pParse, 0, p->pEList);
          generateColumnTypes(pParse, p->pSrc, p->pEList);
        }
        iBreak = sqliteVdbeMakeLabel(v);
        iCont = sqliteVdbeMakeLabel(v);
        sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
        computeLimitRegisters(pParse, p);
        iStart = sqliteVdbeCurrentAddr(v);
        multiSelectSortOrder(p, p->pOrderBy);
        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
                             p->pOrderBy, -1, eDest, iParm, 
                             iCont, iBreak);
        if( rc ) return 1;
        sqliteVdbeResolveLabel(v, iCont);
        sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
        sqliteVdbeResolveLabel(v, iBreak);
        sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
        if( p->pOrderBy ){
          generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
        }
      }
      break;
    }
    case TK_INTERSECT: {
      int tab1, tab2;
      int iCont, iBreak, iStart;
      int nLimit, nOffset;

      /* INTERSECT is different from the others since it requires
      ** two temporary tables.  Hence it has its own case.  Begin
      ** by allocating the tables we will need.
      */
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
        return 1;
      }
      sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
      sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
      if( rc ) return rc;

      /* Code the current SELECT into temporary table "tab2"
      */
      sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
      sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
      p->pPrior = 0;
      nLimit = p->nLimit;
      p->nLimit = -1;
      nOffset = p->nOffset;
      p->nOffset = 0;
      rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
      p->pPrior = pPrior;
      p->nLimit = nLimit;
      p->nOffset = nOffset;
      if( rc ) return rc;

      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      if( eDest==SRT_Callback ){
        generateColumnNames(pParse, 0, p->pEList);
        generateColumnTypes(pParse, p->pSrc, p->pEList);
      }
      iBreak = sqliteVdbeMakeLabel(v);
      iCont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
      computeLimitRegisters(pParse, p);
      iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
      sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
      multiSelectSortOrder(p, p->pOrderBy);
      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
                             p->pOrderBy, -1, eDest, iParm, 
                             iCont, iBreak);
      if( rc ) return 1;
      sqliteVdbeResolveLabel(v, iCont);
      sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
      sqliteVdbeResolveLabel(v, iBreak);
      sqliteVdbeAddOp(v, OP_Close, tab2, 0);
      sqliteVdbeAddOp(v, OP_Close, tab1, 0);
      if( p->pOrderBy ){
        generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
      }
      break;
    }
  }
  assert( p->pEList && pPrior->pEList );
  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
    sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
    return 1;
  }
  return 0;
}

static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
select.c1265
STATIC VOIDsubstExpr(Expr *pExpr, int iTable, ExprList *pEList)
static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
  if( pExpr==0 ) return;
  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      assert( pEList!=0 && pExpr->iColumnnExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
      pNew = pEList->a[pExpr->iColumn].pExpr;
      assert( pNew!=0 );
      pExpr->op = pNew->op;
      pExpr->dataType = pNew->dataType;
      assert( pExpr->pLeft==0 );
      pExpr->pLeft = sqliteExprDup(pNew->pLeft);
      assert( pExpr->pRight==0 );
      pExpr->pRight = sqliteExprDup(pNew->pRight);
      assert( pExpr->pList==0 );
      pExpr->pList = sqliteExprListDup(pNew->pList);
      pExpr->iTable = pNew->iTable;
      pExpr->iColumn = pNew->iColumn;
      pExpr->iAgg = pNew->iAgg;
      sqliteTokenCopy(&pExpr->token, &pNew->token);
      sqliteTokenCopy(&pExpr->span, &pNew->span);
    }
  }else{
    substExpr(pExpr->pLeft, iTable, pEList);
    substExpr(pExpr->pRight, iTable, pEList);
    substExprList(pExpr->pList, iTable, pEList);
  }
}
select.c1526
STATIC VOIDsubstExprList(ExprList *pList, int iTable, ExprList *pEList)
static void 
substExprList(ExprList *pList, int iTable, ExprList *pEList){
  int i;
  if( pList==0 ) return;
  for(i=0; inExpr; i++){
    substExpr(pList->a[i].pExpr, iTable, pEList);
  }
}
select.c1557
STATIC INTflattenSubquery( Parse *pParse, Select *p, int iFrom, int isAgg, int subqueryIsAgg )
static int flattenSubquery(
  Parse *pParse,       /* The parsing context */
  Select *p,           /* The parent or outer SELECT statement */
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  int isAgg,           /* True if outer SELECT uses aggregate functions */
  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
){
  Select *pSub;       /* The inner query or "subquery" */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int i;
  Expr *pWhere;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */
  if( p==0 ) return 0;
  pSrc = p->pSrc;
  assert( pSrc && iFrom>=0 && iFromnSrc );
  pSub = pSrc->a[iFrom].pSelect;
  assert( pSub!=0 );
  if( isAgg && subqueryIsAgg ) return 0;
  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  if( pSubSrc->nSrc==0 ) return 0;
  if( (pSub->isDistinct || pSub->nLimit>=0) &&  (pSrc->nSrc>1 || isAgg) ){
     return 0;
  }
  if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
  if( p->pOrderBy && pSub->pOrderBy ) return 0;

  /* Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
  ** is not allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  */
  if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
    return 0;
  }

  /* Restriction 12:  If the subquery is the right operand of a left outer
  ** join, make sure the subquery has no WHERE clause.
  ** An examples of why this is not allowed:
  **
  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
  **
  ** But the t2.x>0 test will always fail on a NULL row of t2, which
  ** effectively converts the OUTER JOIN into an INNER JOIN.
  */
  if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 
      && pSub->pWhere!=0 ){
    return 0;
  }

  /* If we reach this point, it means flattening is permitted for the
  ** iFrom-th entry of the FROM clause in the outer query.
  */

  /* Move all of the FROM elements of the subquery into the
  ** the FROM clause of the outer query.  Before doing this, remember
  ** the cursor number for the original outer query FROM element in
  ** iParent.  The iParent cursor will never be used.  Subsequent code
  ** will scan expressions looking for iParent references and replace
  ** those references with expressions that resolve to the subquery FROM
  ** elements we are now copying in.
  */
  iParent = pSrc->a[iFrom].iCursor;
  {
    int nSubSrc = pSubSrc->nSrc;
    int jointype = pSrc->a[iFrom].jointype;

    if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
      sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
    }
    sqliteFree(pSrc->a[iFrom].zDatabase);
    sqliteFree(pSrc->a[iFrom].zName);
    sqliteFree(pSrc->a[iFrom].zAlias);
    if( nSubSrc>1 ){
      int extra = nSubSrc - 1;
      for(i=1; ipSrc = pSrc;
      for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
        pSrc->a[i] = pSrc->a[i-extra];
      }
    }
    for(i=0; ia[i+iFrom] = pSubSrc->a[i];
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
  }

  /* Now begin substituting subquery result set expressions for 
  ** references to the iParent in the outer query.
  ** 
  ** Example:
  **
  **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
  **   \                     \_____________ subquery __________/          /
  **    \_____________________ outer query ______________________________/
  **
  ** We look at every expression in the outer query and every place we see
  ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
  */
  substExprList(p->pEList, iParent, pSub->pEList);
  pList = p->pEList;
  for(i=0; inExpr; i++){
    Expr *pExpr;
    if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
      pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
    }
  }
  if( isAgg ){
    substExprList(p->pGroupBy, iParent, pSub->pEList);
    substExpr(p->pHaving, iParent, pSub->pEList);
  }
  if( pSub->pOrderBy ){
    assert( p->pOrderBy==0 );
    p->pOrderBy = pSub->pOrderBy;
    pSub->pOrderBy = 0;
  }else if( p->pOrderBy ){
    substExprList(p->pOrderBy, iParent, pSub->pEList);
  }
  if( pSub->pWhere ){
    pWhere = sqliteExprDup(pSub->pWhere);
  }else{
    pWhere = 0;
  }
  if( subqueryIsAgg ){
    assert( p->pHaving==0 );
    p->pHaving = p->pWhere;
    p->pWhere = pWhere;
    substExpr(p->pHaving, iParent, pSub->pEList);
    if( pSub->pHaving ){
      Expr *pHaving = sqliteExprDup(pSub->pHaving);
      if( p->pHaving ){
        p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
      }else{
        p->pHaving = pHaving;
      }
    }
    assert( p->pGroupBy==0 );
    p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
  }else if( p->pWhere==0 ){
    p->pWhere = pWhere;
  }else{
    substExpr(p->pWhere, iParent, pSub->pEList);
    if( pWhere ){
      p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
    }
  }

  /* The flattened query is distinct if either the inner or the
  ** outer query is distinct. 
  */
  p->isDistinct = p->isDistinct || pSub->isDistinct;

  /* Transfer the limit expression from the subquery to the outer
  ** query.
  */
  if( pSub->nLimit>=0 ){
    if( p->nLimit<0 ){
      p->nLimit = pSub->nLimit;
    }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
      p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
    }
  }
  p->nOffset += pSub->nOffset;

  /* Finially, delete what is left of the subquery and return
  ** success.
  */
  sqliteSelectDelete(pSub);
  return 1;
}
select.c1566
STATIC INTsimpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm)
static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
  Expr *pExpr;
  int iCol;
  Table *pTab;
  Index *pIdx;
  int base;
  Vdbe *v;
  int seekOp;
  int cont;
  ExprList *pEList, *pList, eList;
  struct ExprList_item eListItem;
  SrcList *pSrc;
  

  /* Check to see if this query is a simple min() or max() query.  Return
  ** zero if it is  not.
  */
  if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
  pSrc = p->pSrc;
  if( pSrc->nSrc!=1 ) return 0;
  pEList = p->pEList;
  if( pEList->nExpr!=1 ) return 0;
  pExpr = pEList->a[0].pExpr;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  pList = pExpr->pList;
  if( pList==0 || pList->nExpr!=1 ) return 0;
  if( pExpr->token.n!=3 ) return 0;
  if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
    seekOp = OP_Rewind;
  }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
    seekOp = OP_Last;
  }else{
    return 0;
  }
  pExpr = pList->a[0].pExpr;
  if( pExpr->op!=TK_COLUMN ) return 0;
  iCol = pExpr->iColumn;
  pTab = pSrc->a[0].pTab;

  /* If we get to here, it means the query is of the correct form.
  ** Check to make sure we have an index and make pIdx point to the
  ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
  ** key column, no index is necessary so set pIdx to NULL.  If no
  ** usable index is found, return 0.
  */
  if( iCol<0 ){
    pIdx = 0;
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->nColumn>=1 );
      if( pIdx->aiColumn[0]==iCol ) break;
    }
    if( pIdx==0 ) return 0;
  }

  /* Identify column types if we will be using the callback.  This
  ** step is skipped if the output is going to a table or a memory cell.
  ** The column names have already been generated in the calling function.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return 0;
  if( eDest==SRT_Callback ){
    generateColumnTypes(pParse, p->pSrc, p->pEList);
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( eDest==SRT_TempTable ){
    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
  }

  /* Generating code to find the min or the max.  Basically all we have
  ** to do is find the first or the last entry in the chosen index.  If
  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
  ** or last entry in the main table.
  */
  sqliteCodeVerifySchema(pParse, pTab->iDb);
  base = pSrc->a[0].iCursor;
  computeLimitRegisters(pParse, p);
  if( pSrc->a[0].pSelect==0 ){
    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
  }
  cont = sqliteVdbeMakeLabel(v);
  if( pIdx==0 ){
    sqliteVdbeAddOp(v, seekOp, base, 0);
  }else{
    sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
    if( seekOp==OP_Rewind ){
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_MakeKey, 1, 0);
      sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
      seekOp = OP_MoveTo;
    }
    sqliteVdbeAddOp(v, seekOp, base+1, 0);
    sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
    sqliteVdbeAddOp(v, OP_Close, base+1, 0);
    sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
  }
  eList.nExpr = 1;
  memset(&eListItem, 0, sizeof(eListItem));
  eList.a = &eListItem;
  eList.a[0].pExpr = pExpr;
  selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
  sqliteVdbeResolveLabel(v, cont);
  sqliteVdbeAddOp(v, OP_Close, base, 0);
  
  return 1;
}
select.c1826
INTsqliteSelect( Parse *pParse, Select *p, int eDest, int iParm, Select *pParent, int parentTab, int *pParentAgg )
int sqliteSelect(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  int eDest,             /* How to dispose of the results */
  int iParm,             /* A parameter used by the eDest disposal method */
  Select *pParent,       /* Another SELECT for which this is a sub-query */
  int parentTab,         /* Index in pParent->pSrc of this query */
  int *pParentAgg        /* True if pParent uses aggregate functions */
){
  int i;
  WhereInfo *pWInfo;
  Vdbe *v;
  int isAgg = 0;         /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int isDistinct;        /* True if the DISTINCT keyword is present */
  int distinct;          /* Table to use for the distinct set */
  int rc = 1;            /* Value to return from this function */

  if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
  if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;

  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    return multiSelect(pParse, p, eDest, iParm);
  }

  /* Make local copies of the parameters for this query.
  */
  pTabList = p->pSrc;
  pWhere = p->pWhere;
  pOrderBy = p->pOrderBy;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
  isDistinct = p->isDistinct;

  /* Allocate VDBE cursors for each table in the FROM clause
  */
  sqliteSrcListAssignCursors(pParse, pTabList);

  /* 
  ** Do not even attempt to generate any code if we have already seen
  ** errors before this routine starts.
  */
  if( pParse->nErr>0 ) goto select_end;

  /* Expand any "*" terms in the result set.  (For example the "*" in
  ** "SELECT * FROM t1")  The fillInColumnlist() routine also does some
  ** other housekeeping - see the header comment for details.
  */
  if( fillInColumnList(pParse, p) ){
    goto select_end;
  }
  pWhere = p->pWhere;
  pEList = p->pEList;
  if( pEList==0 ) goto select_end;

  /* If writing to memory or generating a set
  ** only a single column may be output.
  */
  if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
    sqliteErrorMsg(pParse, "only a single result allowed for "
       "a SELECT that is part of an expression");
    goto select_end;
  }

  /* ORDER BY is ignored for some destinations.
  */
  switch( eDest ){
    case SRT_Union:
    case SRT_Except:
    case SRT_Discard:
      pOrderBy = 0;
      break;
    default:
      break;
  }

  /* At this point, we should have allocated all the cursors that we
  ** need to handle subquerys and temporary tables.  
  **
  ** Resolve the column names and do a semantics check on all the expressions.
  */
  for(i=0; inExpr; i++){
    if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
      goto select_end;
    }
    if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
      goto select_end;
    }
  }
  if( pWhere ){
    if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
      goto select_end;
    }
    if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
      goto select_end;
    }
  }
  if( pHaving ){
    if( pGroupBy==0 ){
      sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
      goto select_end;
    }
    if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
      goto select_end;
    }
    if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
      goto select_end;
    }
  }
  if( pOrderBy ){
    for(i=0; inExpr; i++){
      int iCol;
      Expr *pE = pOrderBy->a[i].pExpr;
      if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
        sqliteExprDelete(pE);
        pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
      }
      if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
        goto select_end;
      }
      if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
        goto select_end;
      }
      if( sqliteExprIsConstant(pE) ){
        if( sqliteExprIsInteger(pE, &iCol)==0 ){
          sqliteErrorMsg(pParse,
             "ORDER BY terms must not be non-integer constants");
          goto select_end;
        }else if( iCol<=0 || iCol>pEList->nExpr ){
          sqliteErrorMsg(pParse, 
             "ORDER BY column number %d out of range - should be "
             "between 1 and %d", iCol, pEList->nExpr);
          goto select_end;
        }
      }
    }
  }
  if( pGroupBy ){
    for(i=0; inExpr; i++){
      int iCol;
      Expr *pE = pGroupBy->a[i].pExpr;
      if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
        sqliteExprDelete(pE);
        pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
      }
      if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
        goto select_end;
      }
      if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
        goto select_end;
      }
      if( sqliteExprIsConstant(pE) ){
        if( sqliteExprIsInteger(pE, &iCol)==0 ){
          sqliteErrorMsg(pParse,
            "GROUP BY terms must not be non-integer constants");
          goto select_end;
        }else if( iCol<=0 || iCol>pEList->nExpr ){
          sqliteErrorMsg(pParse,
             "GROUP BY column number %d out of range - should be "
             "between 1 and %d", iCol, pEList->nExpr);
          goto select_end;
        }
      }
    }
  }

  /* Begin generating code.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) goto select_end;

  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  /* Generate code for all sub-queries in the FROM clause
  */
  for(i=0; inSrc; i++){
    const char *zSavedAuthContext;
    int needRestoreContext;

    if( pTabList->a[i].pSelect==0 ) continue;
    if( pTabList->a[i].zName!=0 ){
      zSavedAuthContext = pParse->zAuthContext;
      pParse->zAuthContext = pTabList->a[i].zName;
      needRestoreContext = 1;
    }else{
      needRestoreContext = 0;
    }
    sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable, 
                 pTabList->a[i].iCursor, p, i, &isAgg);
    if( needRestoreContext ){
      pParse->zAuthContext = zSavedAuthContext;
    }
    pTabList = p->pSrc;
    pWhere = p->pWhere;
    if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
      pOrderBy = p->pOrderBy;
    }
    pGroupBy = p->pGroupBy;
    pHaving = p->pHaving;
    isDistinct = p->isDistinct;
  }

  /* Check for the special case of a min() or max() function by itself
  ** in the result set.
  */
  if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
    rc = 0;
    goto select_end;
  }

  /* Check to see if this is a subquery that can be "flattened" into its parent.
  ** If flattening is a possiblity, do so and return immediately.  
  */
  if( pParent && pParentAgg &&
      flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
    if( isAgg ) *pParentAgg = 1;
    return rc;
  }

  /* Set the limiter.
  */
  computeLimitRegisters(pParse, p);

  /* Identify column types if we will be using a callback.  This
  ** step is skipped if the output is going to a destination other
  ** than a callback.
  **
  ** We have to do this separately from the creation of column names
  ** above because if the pTabList contains views then they will not
  ** have been resolved and we will not know the column types until
  ** now.
  */
  if( eDest==SRT_Callback ){
    generateColumnTypes(pParse, pTabList, pEList);
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( eDest==SRT_TempTable ){
    sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
  }

  /* Do an analysis of aggregate expressions.
  */
  sqliteAggregateInfoReset(pParse);
  if( isAgg || pGroupBy ){
    assert( pParse->nAgg==0 );
    isAgg = 1;
    for(i=0; inExpr; i++){
      if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
        goto select_end;
      }
    }
    if( pGroupBy ){
      for(i=0; inExpr; i++){
        if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
          goto select_end;
        }
      }
    }
    if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
      goto select_end;
    }
    if( pOrderBy ){
      for(i=0; inExpr; i++){
        if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
          goto select_end;
        }
      }
    }
  }

  /* Reset the aggregator
  */
  if( isAgg ){
    sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
    for(i=0; inAgg; i++){
      FuncDef *pFunc;
      if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
        sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
      }
    }
    if( pGroupBy==0 ){
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
    }
  }

  /* Initialize the memory cell to NULL
  */
  if( eDest==SRT_Mem ){
    sqliteVdbeAddOp(v, OP_String, 0, 0);
    sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
  }

  /* Open a temporary table to use for the distinct set.
  */
  if( isDistinct ){
    distinct = pParse->nTab++;
    sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
  }else{
    distinct = -1;
  }

  /* Begin the database scan
  */
  pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0, 
                            pGroupBy ? 0 : &pOrderBy);
  if( pWInfo==0 ) goto select_end;

  /* Use the standard inner loop if we are not dealing with
  ** aggregates
  */
  if( !isAgg ){
    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
                    iParm, pWInfo->iContinue, pWInfo->iBreak) ){
       goto select_end;
    }
  }

  /* If we are dealing with aggregates, then do the special aggregate
  ** processing.  
  */
  else{
    AggExpr *pAgg;
    if( pGroupBy ){
      int lbl1;
      for(i=0; inExpr; i++){
        sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
      }
      sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
      if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
      lbl1 = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
      for(i=0, pAgg=pParse->aAgg; inAgg; i++, pAgg++){
        if( pAgg->isAgg ) continue;
        sqliteExprCode(pParse, pAgg->pExpr);
        sqliteVdbeAddOp(v, OP_AggSet, 0, i);
      }
      sqliteVdbeResolveLabel(v, lbl1);
    }
    for(i=0, pAgg=pParse->aAgg; inAgg; i++, pAgg++){
      Expr *pE;
      int nExpr;
      FuncDef *pDef;
      if( !pAgg->isAgg ) continue;
      assert( pAgg->pFunc!=0 );
      assert( pAgg->pFunc->xStep!=0 );
      pDef = pAgg->pFunc;
      pE = pAgg->pExpr;
      assert( pE!=0 );
      assert( pE->op==TK_AGG_FUNCTION );
      nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
      sqliteVdbeAddOp(v, OP_Integer, i, 0);
      sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
    }
  }

  /* End the database scan loop.
  */
  sqliteWhereEnd(pWInfo);

  /* If we are processing aggregates, we need to set up a second loop
  ** over all of the aggregate values and process them.
  */
  if( isAgg ){
    int endagg = sqliteVdbeMakeLabel(v);
    int startagg;
    startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
    pParse->useAgg = 1;
    if( pHaving ){
      sqliteExprIfFalse(pParse, pHaving, startagg, 1);
    }
    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
                    iParm, startagg, endagg) ){
      goto select_end;
    }
    sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
    sqliteVdbeResolveLabel(v, endagg);
    sqliteVdbeAddOp(v, OP_Noop, 0, 0);
    pParse->useAgg = 0;
  }

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    generateSortTail(p, v, pEList->nExpr, eDest, iParm);
  }

  /* If this was a subquery, we have now converted the subquery into a
  ** temporary table.  So delete the subquery structure from the parent
  ** to prevent this subquery from being evaluated again and to force the
  ** the use of the temporary table.
  */
  if( pParent ){
    assert( pParent->pSrc->nSrc>parentTab );
    assert( pParent->pSrc->a[parentTab].pSelect==p );
    sqliteSelectDelete(p);
    pParent->pSrc->a[parentTab].pSelect = 0;
  }

  /* The SELECT was successfully coded.   Set the return code to 0
  ** to indicate no errors.
  */
  rc = 0;

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:
  sqliteAggregateInfoReset(pParse);
  return rc;
}
select.c1957
table.c
TypeFunctionSourceLine
STATIC INTsqlite_get_table_cb(void *pArg, int nCol, char **argv, char **colv)
static int sqlite_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
  TabResult *p = (TabResult*)pArg;
  int need;
  int i;
  char *z;

  /* Make sure there is enough space in p->azResult to hold everything
  ** we need to remember from this invocation of the callback.
  */
  if( p->nRow==0 && argv!=0 ){
    need = nCol*2;
  }else{
    need = nCol;
  }
  if( p->nData + need >= p->nAlloc ){
    char **azNew;
    p->nAlloc = p->nAlloc*2 + need + 1;
    azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc );
    if( azNew==0 ){
      p->rc = SQLITE_NOMEM;
      return 1;
    }
    p->azResult = azNew;
  }

  /* If this is the first row, then generate an extra row containing
  ** the names of all columns.
  */
  if( p->nRow==0 ){
    p->nColumn = nCol;
    for(i=0; irc = SQLITE_NOMEM;
          return 1;
        }
        strcpy(z, colv[i]);
      }
      p->azResult[p->nData++] = z;
    }
  }else if( p->nColumn!=nCol ){
    sqliteSetString(&p->zErrMsg,
       "sqlite_get_table() called with two or more incompatible queries",
       (char*)0);
    p->rc = SQLITE_ERROR;
    return 1;
  }

  /* Copy over the row data
  */
  if( argv!=0 ){
    for(i=0; irc = SQLITE_NOMEM;
          return 1;
        }
        strcpy(z, argv[i]);
      }
      p->azResult[p->nData++] = z;
    }
    p->nRow++;
  }
  return 0;
}
table.c38
INTsqlite_get_table( sqlite *db, const char *zSql, char ***pazResult, int *pnRow, int *pnColumn, char **pzErrMsg )
int sqlite_get_table(
  sqlite *db,                 /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  char ***pazResult,          /* Write the result table here */
  int *pnRow,                 /* Write the number of rows in the result here */
  int *pnColumn,              /* Write the number of columns of result here */
  char **pzErrMsg             /* Write error messages here */
){
  int rc;
  TabResult res;
  if( pazResult==0 ){ return SQLITE_ERROR; }
  *pazResult = 0;
  if( pnColumn ) *pnColumn = 0;
  if( pnRow ) *pnRow = 0;
  res.zErrMsg = 0;
  res.nResult = 0;
  res.nRow = 0;
  res.nColumn = 0;
  res.nData = 1;
  res.nAlloc = 20;
  res.rc = SQLITE_OK;
  res.azResult = malloc( sizeof(char*)*res.nAlloc );
  if( res.azResult==0 ){
    return SQLITE_NOMEM;
  }
  res.azResult[0] = 0;
  rc = sqlite_exec(db, zSql, sqlite_get_table_cb, &res, pzErrMsg);
  if( res.azResult ){
    res.azResult[0] = (char*)res.nData;
  }
  if( rc==SQLITE_ABORT ){
    sqlite_free_table(&res.azResult[1]);
    if( res.zErrMsg ){
      if( pzErrMsg ){
        free(*pzErrMsg);
        *pzErrMsg = res.zErrMsg;
        sqliteStrRealloc(pzErrMsg);
      }else{
        sqliteFree(res.zErrMsg);
      }
    }
    return res.rc;
  }
  sqliteFree(res.zErrMsg);
  if( rc!=SQLITE_OK ){
    sqlite_free_table(&res.azResult[1]);
    return rc;
  }
  if( res.nAlloc>res.nData ){
    char **azNew;
    azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) );
    if( azNew==0 ){
      sqlite_free_table(&res.azResult[1]);
      return SQLITE_NOMEM;
    }
    res.nAlloc = res.nData+1;
    res.azResult = azNew;
  }
  *pazResult = &res.azResult[1];
  if( pnColumn ) *pnColumn = res.nColumn;
  if( pnRow ) *pnRow = res.nRow;
  return rc;
}
table.c115
VOIDsqlite_free_table( char **azResult )
void sqlite_free_table(
  char **azResult             /* Result returned from from sqlite_get_table() */
){
  if( azResult ){
    int i, n;
    azResult--;
    if( azResult==0 ) return;
    n = (int)(long)azResult[0];
    for(i=1; i
table.c189
tokenize.c
TypeFunctionSourceLine
INTsqliteKeywordCode(const char *z, int n)
int sqliteKeywordCode(const char *z, int n){
  int h, i;
  Keyword *p;
  static char needInit = 1;
  if( needInit ){
    /* Initialize the keyword hash table */
    sqliteOsEnterMutex();
    if( needInit ){
      int nk;
      nk = sizeof(aKeywordTable)/sizeof(aKeywordTable[0]);
      for(i=0; iiNext){
    p = &aKeywordTable[i-1];
    if( p->len==n && sqliteStrNICmp(p->zName, z, n)==0 ){
      return p->tokenType;
    }
  }
  return TK_ID;
}


/*
** If X is a character that can be used in an identifier and
** X&0x80==0 then isIdChar[X] will be 1.  If X&0x80==0x80 then
** X is always an identifier character.  (Hence all UTF-8
** characters can be part of an identifier).  isIdChar[X] will
** be 0 for every character in the lower 128 ASCII characters
** that cannot be used as part of an identifier.
**
** In this implementation, an identifier can be a string of
** alphabetic characters, digits, and "_" plus any character
** with the high-order bit set.  The latter rule means that
** any sequence of UTF-8 characters or characters taken from
** an extended ISO8859 character set can form an identifier.
*/
static const char isIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 0x */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 1x */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
};
tokenize.c150
STATIC INTsqliteGetToken(const unsigned char *z, int *tokenType)
static int sqliteGetToken(const unsigned char *z, int *tokenType){
  int i;
  switch( *z ){
    case ' ': case '\t': case '\n': case '\f': case '\r': {
      for(i=1; isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case '-': {
      if( z[1]=='-' ){
        for(i=2; z[i] && z[i]!='\n'; i++){}
        *tokenType = TK_COMMENT;
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }
    case '(': {
      *tokenType = TK_LP;
      return 1;
    }
    case ')': {
      *tokenType = TK_RP;
      return 1;
    }
    case ';': {
      *tokenType = TK_SEMI;
      return 1;
    }
    case '+': {
      *tokenType = TK_PLUS;
      return 1;
    }
    case '*': {
      *tokenType = TK_STAR;
      return 1;
    }
    case '/': {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }
      for(i=3; z[i] && (z[i]!='/' || z[i-1]!='*'); i++){}
      if( z[i] ) i++;
      *tokenType = TK_COMMENT;
      return i;
    }
    case '%': {
      *tokenType = TK_REM;
      return 1;
    }
    case '=': {
      *tokenType = TK_EQ;
      return 1 + (z[1]=='=');
    }
    case '<': {
      if( z[1]=='=' ){
        *tokenType = TK_LE;
        return 2;
      }else if( z[1]=='>' ){
        *tokenType = TK_NE;
        return 2;
      }else if( z[1]=='<' ){
        *tokenType = TK_LSHIFT;
        return 2;
      }else{
        *tokenType = TK_LT;
        return 1;
      }
    }
    case '>': {
      if( z[1]=='=' ){
        *tokenType = TK_GE;
        return 2;
      }else if( z[1]=='>' ){
        *tokenType = TK_RSHIFT;
        return 2;
      }else{
        *tokenType = TK_GT;
        return 1;
      }
    }
    case '!': {
      if( z[1]!='=' ){
        *tokenType = TK_ILLEGAL;
        return 2;
      }else{
        *tokenType = TK_NE;
        return 2;
      }
    }
    case '|': {
      if( z[1]!='|' ){
        *tokenType = TK_BITOR;
        return 1;
      }else{
        *tokenType = TK_CONCAT;
        return 2;
      }
    }
    case ',': {
      *tokenType = TK_COMMA;
      return 1;
    }
    case '&': {
      *tokenType = TK_BITAND;
      return 1;
    }
    case '~': {
      *tokenType = TK_BITNOT;
      return 1;
    }
    case '\'': case '"': {
      int delim = z[0];
      for(i=1; z[i]; i++){
        if( z[i]==delim ){
          if( z[i+1]==delim ){
            i++;
          }else{
            break;
          }
        }
      }
      if( z[i] ) i++;
      *tokenType = TK_STRING;
      return i;
    }
    case '.': {
      *tokenType = TK_DOT;
      return 1;
    }
    case '0': case '1': case '2': case '3': case '4':
    case '5': case '6': case '7': case '8': case '9': {
      *tokenType = TK_INTEGER;
      for(i=1; isdigit(z[i]); i++){}
      if( z[i]=='.' && isdigit(z[i+1]) ){
        i += 2;
        while( isdigit(z[i]) ){ i++; }
        *tokenType = TK_FLOAT;
      }
      if( (z[i]=='e' || z[i]=='E') &&
           ( isdigit(z[i+1]) 
            || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
           )
      ){
        i += 2;
        while( isdigit(z[i]) ){ i++; }
        *tokenType = TK_FLOAT;
      }
      return i;
    }
    case '[': {
      for(i=1; z[i] && z[i-1]!=']'; i++){}
      *tokenType = TK_ID;
      return i;
    }
    case '?': {
      *tokenType = TK_VARIABLE;
      return 1;
    }
    default: {
      if( (*z&0x80)==0 && !isIdChar[*z] ){
        break;
      }
      for(i=1; (z[i]&0x80)!=0 || isIdChar[z[i]]; i++){}
      *tokenType = sqliteKeywordCode((char*)z, i);
      return i;
    }
  }
  *tokenType = TK_ILLEGAL;
  return 1;
}
tokenize.c214
} INTsqliteRunParser(Parse *pParse, const char *zSql, char **pzErrMsg)
int sqliteRunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;
  int i;
  void *pEngine;
  int tokenType;
  int lastTokenParsed = -1;
  sqlite *db = pParse->db;
  extern void *sqliteParserAlloc(void*(*)(int));
  extern void sqliteParserFree(void*, void(*)(void*));
  extern int sqliteParser(void*, int, Token, Parse*);

  db->flags &= ~SQLITE_Interrupt;
  pParse->rc = SQLITE_OK;
  i = 0;
  pEngine = sqliteParserAlloc((void*(*)(int))malloc);
  if( pEngine==0 ){
    sqliteSetString(pzErrMsg, "out of memory", (char*)0);
    return 1;
  }
  pParse->sLastToken.dyn = 0;
  pParse->zTail = zSql;
  while( sqlite_malloc_failed==0 && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    assert( pParse->sLastToken.dyn==0 );
    pParse->sLastToken.n = sqliteGetToken((unsigned char*)&zSql[i], &tokenType);
    i += pParse->sLastToken.n;
    switch( tokenType ){
      case TK_SPACE:
      case TK_COMMENT: {
        if( (db->flags & SQLITE_Interrupt)!=0 ){
          pParse->rc = SQLITE_INTERRUPT;
          sqliteSetString(pzErrMsg, "interrupt", (char*)0);
          goto abort_parse;
        }
        break;
      }
      case TK_ILLEGAL: {
        sqliteSetNString(pzErrMsg, "unrecognized token: \"", -1, 
           pParse->sLastToken.z, pParse->sLastToken.n, "\"", 1, 0);
        nErr++;
        goto abort_parse;
      }
      case TK_SEMI: {
        pParse->zTail = &zSql[i];
        /* Fall thru into the default case */
      }
      default: {
        sqliteParser(pEngine, tokenType, pParse->sLastToken, pParse);
        lastTokenParsed = tokenType;
        if( pParse->rc!=SQLITE_OK ){
          goto abort_parse;
        }
        break;
      }
    }
  }
abort_parse:
  if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
    if( lastTokenParsed!=TK_SEMI ){
      sqliteParser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqliteParser(pEngine, 0, pParse->sLastToken, pParse);
  }
  sqliteParserFree(pEngine, free);
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    sqliteSetString(&pParse->zErrMsg, sqlite_error_string(pParse->rc),
                    (char*)0);
  }
  if( pParse->zErrMsg ){
    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = pParse->zErrMsg;
    }else{
      sqliteFree(pParse->zErrMsg);
    }
    pParse->zErrMsg = 0;
    if( !nErr ) nErr++;
  }
  if( pParse->pVdbe && pParse->nErr>0 ){
    sqliteVdbeDelete(pParse->pVdbe);
    pParse->pVdbe = 0;
  }
  if( pParse->pNewTable ){
    sqliteDeleteTable(pParse->db, pParse->pNewTable);
    pParse->pNewTable = 0;
  }
  if( pParse->pNewTrigger ){
    sqliteDeleteTrigger(pParse->pNewTrigger);
    pParse->pNewTrigger = 0;
  }
  if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
    pParse->rc = SQLITE_ERROR;
  }
  return nErr;
}

tokenize.c391
INTsqlite_complete(const char *zSql)
int sqlite_complete(const char *zSql){
  u8 state = 0;   /* Current state, using numbers defined in header comment */
  u8 token;       /* Value of the next token */

  /* The following matrix defines the transition from one state to another
  ** according to what token is seen.  trans[state][token] returns the
  ** next state.
  */
  static const u8 trans[7][8] = {
                     /* Token:                                                */
     /* State:       **  EXPLAIN  CREATE  TEMP  TRIGGER  END  SEMI  WS  OTHER */
     /* 0   START: */ {       1,      2,    3,       3,   3,    0,  0,     3, },
     /* 1 EXPLAIN: */ {       3,      2,    3,       3,   3,    0,  1,     3, },
     /* 2  CREATE: */ {       3,      3,    2,       4,   3,    0,  2,     3, },
     /* 3  NORMAL: */ {       3,      3,    3,       3,   3,    0,  3,     3, },
     /* 4 TRIGGER: */ {       4,      4,    4,       4,   4,    5,  4,     4, },
     /* 5    SEMI: */ {       4,      4,    4,       4,   6,    5,  5,     4, },
     /* 6     END: */ {       4,      4,    4,       4,   4,    0,  6,     4, },
  };

  while( *zSql ){
    switch( *zSql ){
      case ';': {  /* A semicolon */
        token = tkSEMI;
        break;
      }
      case ' ':
      case '\r':
      case '\t':
      case '\n':
      case '\f': {  /* White space is ignored */
        token = tkWS;
        break;
      }
      case '/': {   /* C-style comments */
        if( zSql[1]!='*' ){
          token = tkOTHER;
          break;
        }
        zSql += 2;
        while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
        if( zSql[0]==0 ) return 0;
        zSql++;
        token = tkWS;
        break;
      }
      case '-': {   /* SQL-style comments from "--" to end of line */
        if( zSql[1]!='-' ){
          token = tkOTHER;
          break;
        }
        while( *zSql && *zSql!='\n' ){ zSql++; }
        if( *zSql==0 ) return state==0;
        token = tkWS;
        break;
      }
      case '[': {   /* Microsoft-style identifiers in [...] */
        zSql++;
        while( *zSql && *zSql!=']' ){ zSql++; }
        if( *zSql==0 ) return 0;
        token = tkOTHER;
        break;
      }
      case '"':     /* single- and double-quoted strings */
      case '\'': {
        int c = *zSql;
        zSql++;
        while( *zSql && *zSql!=c ){ zSql++; }
        if( *zSql==0 ) return 0;
        token = tkOTHER;
        break;
      }
      default: {
        if( isIdChar[(u8)*zSql] ){
          /* Keywords and unquoted identifiers */
          int nId;
          for(nId=1; isIdChar[(u8)zSql[nId]]; nId++){}
          switch( *zSql ){
            case 'c': case 'C': {
              if( nId==6 && sqliteStrNICmp(zSql, "create", 6)==0 ){
                token = tkCREATE;
              }else{
                token = tkOTHER;
              }
              break;
            }
            case 't': case 'T': {
              if( nId==7 && sqliteStrNICmp(zSql, "trigger", 7)==0 ){
                token = tkTRIGGER;
              }else if( nId==4 && sqliteStrNICmp(zSql, "temp", 4)==0 ){
                token = tkTEMP;
              }else if( nId==9 && sqliteStrNICmp(zSql, "temporary", 9)==0 ){
                token = tkTEMP;
              }else{
                token = tkOTHER;
              }
              break;
            }
            case 'e':  case 'E': {
              if( nId==3 && sqliteStrNICmp(zSql, "end", 3)==0 ){
                token = tkEND;
              }else if( nId==7 && sqliteStrNICmp(zSql, "explain", 7)==0 ){
                token = tkEXPLAIN;
              }else{
                token = tkOTHER;
              }
              break;
            }
            default: {
              token = tkOTHER;
              break;
            }
          }
          zSql += nId-1;
        }else{
          /* Operators and special symbols */
          token = tkOTHER;
        }
        break;
      }
    }
    state = trans[state][token];
    zSql++;
  }
  return state==0;
}
tokenize.c508
trigger.c
TypeFunctionSourceLine
VOIDsqliteDeleteTriggerStep(TriggerStep *pTriggerStep)
void sqliteDeleteTriggerStep(TriggerStep *pTriggerStep){
  while( pTriggerStep ){
    TriggerStep * pTmp = pTriggerStep;
    pTriggerStep = pTriggerStep->pNext;

    if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
    sqliteExprDelete(pTmp->pWhere);
    sqliteExprListDelete(pTmp->pExprList);
    sqliteSelectDelete(pTmp->pSelect);
    sqliteIdListDelete(pTmp->pIdList);

    sqliteFree(pTmp);
  }
}
trigger.c15
VOIDsqliteBeginTrigger( Parse *pParse, Token *pName, int tr_tm, int op, IdList *pColumns, SrcList *pTableName, int foreach, Expr *pWhen, int isTemp )
void sqliteBeginTrigger(
  Parse *pParse,      /* The parse context of the CREATE TRIGGER statement */
  Token *pName,       /* The name of the trigger */
  int tr_tm,          /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
  int op,             /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
  IdList *pColumns,   /* column list if this is an UPDATE OF trigger */
  SrcList *pTableName,/* The name of the table/view the trigger applies to */
  int foreach,        /* One of TK_ROW or TK_STATEMENT */
  Expr *pWhen,        /* WHEN clause */
  int isTemp          /* True if the TEMPORARY keyword is present */
){
  Trigger *nt;
  Table   *tab;
  char *zName = 0;        /* Name of the trigger */
  sqlite *db = pParse->db;
  int iDb;                /* When database to store the trigger in */
  DbFixer sFix;

  /* Check that: 
  ** 1. the trigger name does not already exist.
  ** 2. the table (or view) does exist in the same database as the trigger.
  ** 3. that we are not trying to create a trigger on the sqlite_master table
  ** 4. That we are not trying to create an INSTEAD OF trigger on a table.
  ** 5. That we are not trying to create a BEFORE or AFTER trigger on a view.
  */
  if( sqlite_malloc_failed ) goto trigger_cleanup;
  assert( pTableName->nSrc==1 );
  if( db->init.busy
   && sqliteFixInit(&sFix, pParse, db->init.iDb, "trigger", pName)
   && sqliteFixSrcList(&sFix, pTableName)
  ){
    goto trigger_cleanup;
  }
  tab = sqliteSrcListLookup(pParse, pTableName);
  if( !tab ){
    goto trigger_cleanup;
  }
  iDb = isTemp ? 1 : tab->iDb;
  if( iDb>=2 && !db->init.busy ){
    sqliteErrorMsg(pParse, "triggers may not be added to auxiliary "
       "database %s", db->aDb[tab->iDb].zName);
    goto trigger_cleanup;
  }

  zName = sqliteStrNDup(pName->z, pName->n);
  sqliteDequote(zName);
  if( sqliteHashFind(&(db->aDb[iDb].trigHash), zName,pName->n+1) ){
    sqliteErrorMsg(pParse, "trigger %T already exists", pName);
    goto trigger_cleanup;
  }
  if( sqliteStrNICmp(tab->zName, "sqlite_", 7)==0 ){
    sqliteErrorMsg(pParse, "cannot create trigger on system table");
    pParse->nErr++;
    goto trigger_cleanup;
  }
  if( tab->pSelect && tr_tm != TK_INSTEAD ){
    sqliteErrorMsg(pParse, "cannot create %s trigger on view: %S", 
        (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
    goto trigger_cleanup;
  }
  if( !tab->pSelect && tr_tm == TK_INSTEAD ){
    sqliteErrorMsg(pParse, "cannot create INSTEAD OF"
        " trigger on table: %S", pTableName, 0);
    goto trigger_cleanup;
  }
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_CREATE_TRIGGER;
    const char *zDb = db->aDb[tab->iDb].zName;
    const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
    if( tab->iDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
    if( sqliteAuthCheck(pParse, code, zName, tab->zName, zDbTrig) ){
      goto trigger_cleanup;
    }
    if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(tab->iDb), 0, zDb)){
      goto trigger_cleanup;
    }
  }
#endif

  /* INSTEAD OF triggers can only appear on views and BEGIN triggers
  ** cannot appear on views.  So we might as well translate every
  ** INSTEAD OF trigger into a BEFORE trigger.  It simplifies code
  ** elsewhere.
  */
  if (tr_tm == TK_INSTEAD){
    tr_tm = TK_BEFORE;
  }

  /* Build the Trigger object */
  nt = (Trigger*)sqliteMalloc(sizeof(Trigger));
  if( nt==0 ) goto trigger_cleanup;
  nt->name = zName;
  zName = 0;
  nt->table = sqliteStrDup(pTableName->a[0].zName);
  if( sqlite_malloc_failed ) goto trigger_cleanup;
  nt->iDb = iDb;
  nt->iTabDb = tab->iDb;
  nt->op = op;
  nt->tr_tm = tr_tm;
  nt->pWhen = sqliteExprDup(pWhen);
  nt->pColumns = sqliteIdListDup(pColumns);
  nt->foreach = foreach;
  sqliteTokenCopy(&nt->nameToken,pName);
  assert( pParse->pNewTrigger==0 );
  pParse->pNewTrigger = nt;

trigger_cleanup:
  sqliteFree(zName);
  sqliteSrcListDelete(pTableName);
  sqliteIdListDelete(pColumns);
  sqliteExprDelete(pWhen);
}
trigger.c33
VOIDsqliteFinishTrigger( Parse *pParse, TriggerStep *pStepList, Token *pAll )
void sqliteFinishTrigger(
  Parse *pParse,          /* Parser context */
  TriggerStep *pStepList, /* The triggered program */
  Token *pAll             /* Token that describes the complete CREATE TRIGGER */
){
  Trigger *nt = 0;          /* The trigger whose construction is finishing up */
  sqlite *db = pParse->db;  /* The database */
  DbFixer sFix;

  if( pParse->nErr || pParse->pNewTrigger==0 ) goto triggerfinish_cleanup;
  nt = pParse->pNewTrigger;
  pParse->pNewTrigger = 0;
  nt->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = nt;
    pStepList = pStepList->pNext;
  }
  if( sqliteFixInit(&sFix, pParse, nt->iDb, "trigger", &nt->nameToken) 
          && sqliteFixTriggerStep(&sFix, nt->step_list) ){
    goto triggerfinish_cleanup;
  }

  /* if we are not initializing, and this trigger is not on a TEMP table, 
  ** build the sqlite_master entry
  */
  if( !db->init.busy ){
    static VdbeOpList insertTrig[] = {
      { OP_NewRecno,   0, 0,  0          },
      { OP_String,     0, 0,  "trigger"  },
      { OP_String,     0, 0,  0          },  /* 2: trigger name */
      { OP_String,     0, 0,  0          },  /* 3: table name */
      { OP_Integer,    0, 0,  0          },
      { OP_String,     0, 0,  0          },  /* 5: SQL */
      { OP_MakeRecord, 5, 0,  0          },
      { OP_PutIntKey,  0, 0,  0          },
    };
    int addr;
    Vdbe *v;

    /* Make an entry in the sqlite_master table */
    v = sqliteGetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqliteBeginWriteOperation(pParse, 0, 0);
    sqliteOpenMasterTable(v, nt->iDb);
    addr = sqliteVdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
    sqliteVdbeChangeP3(v, addr+2, nt->name, 0); 
    sqliteVdbeChangeP3(v, addr+3, nt->table, 0); 
    sqliteVdbeChangeP3(v, addr+5, pAll->z, pAll->n);
    if( nt->iDb==0 ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    sqliteEndWriteOperation(pParse);
  }

  if( !pParse->explain ){
    Table *pTab;
    sqliteHashInsert(&db->aDb[nt->iDb].trigHash, 
                     nt->name, strlen(nt->name)+1, nt);
    pTab = sqliteLocateTable(pParse, nt->table, db->aDb[nt->iTabDb].zName);
    assert( pTab!=0 );
    nt->pNext = pTab->pTrigger;
    pTab->pTrigger = nt;
    nt = 0;
  }

triggerfinish_cleanup:
  sqliteDeleteTrigger(nt);
  sqliteDeleteTrigger(pParse->pNewTrigger);
  pParse->pNewTrigger = 0;
  sqliteDeleteTriggerStep(pStepList);
}
trigger.c155
STATIC VOIDsqlitePersistTriggerStep(TriggerStep *p)
static void sqlitePersistTriggerStep(TriggerStep *p){
  if( p->target.z ){
    p->target.z = sqliteStrNDup(p->target.z, p->target.n);
    p->target.dyn = 1;
  }
  if( p->pSelect ){
    Select *pNew = sqliteSelectDup(p->pSelect);
    sqliteSelectDelete(p->pSelect);
    p->pSelect = pNew;
  }
  if( p->pWhere ){
    Expr *pNew = sqliteExprDup(p->pWhere);
    sqliteExprDelete(p->pWhere);
    p->pWhere = pNew;
  }
  if( p->pExprList ){
    ExprList *pNew = sqliteExprListDup(p->pExprList);
    sqliteExprListDelete(p->pExprList);
    p->pExprList = pNew;
  }
  if( p->pIdList ){
    IdList *pNew = sqliteIdListDup(p->pIdList);
    sqliteIdListDelete(p->pIdList);
    p->pIdList = pNew;
  }
}
trigger.c232
TRIGGERSTEP sqliteTriggerSelectStep(Select *pSelect)
TriggerStep *sqliteTriggerSelectStep(Select *pSelect){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
  if( pTriggerStep==0 ) return 0;

  pTriggerStep->op = TK_SELECT;
  pTriggerStep->pSelect = pSelect;
  pTriggerStep->orconf = OE_Default;
  sqlitePersistTriggerStep(pTriggerStep);

  return pTriggerStep;
}
trigger.c269
TRIGGERSTEP sqliteTriggerInsertStep( Token *pTableName, IdList *pColumn, ExprList *pEList, Select *pSelect, int orconf )
TriggerStep *sqliteTriggerInsertStep(
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  ExprList *pEList,   /* The VALUE clause: a list of values to be inserted */
  Select *pSelect,    /* A SELECT statement that supplies values */
  int orconf          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
  if( pTriggerStep==0 ) return 0;

  assert(pEList == 0 || pSelect == 0);
  assert(pEList != 0 || pSelect != 0);

  pTriggerStep->op = TK_INSERT;
  pTriggerStep->pSelect = pSelect;
  pTriggerStep->target  = *pTableName;
  pTriggerStep->pIdList = pColumn;
  pTriggerStep->pExprList = pEList;
  pTriggerStep->orconf = orconf;
  sqlitePersistTriggerStep(pTriggerStep);

  return pTriggerStep;
}
trigger.c288
TRIGGERSTEP sqliteTriggerUpdateStep( Token *pTableName, ExprList *pEList, Expr *pWhere, int orconf )
TriggerStep *sqliteTriggerUpdateStep(
  Token *pTableName,   /* Name of the table to be updated */
  ExprList *pEList,    /* The SET clause: list of column and new values */
  Expr *pWhere,        /* The WHERE clause */
  int orconf           /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
  if( pTriggerStep==0 ) return 0;

  pTriggerStep->op = TK_UPDATE;
  pTriggerStep->target  = *pTableName;
  pTriggerStep->pExprList = pEList;
  pTriggerStep->pWhere = pWhere;
  pTriggerStep->orconf = orconf;
  sqlitePersistTriggerStep(pTriggerStep);

  return pTriggerStep;
}
trigger.c319
TRIGGERSTEP sqliteTriggerDeleteStep(Token *pTableName, Expr *pWhere)
TriggerStep *sqliteTriggerDeleteStep(Token *pTableName, Expr *pWhere){
  TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
  if( pTriggerStep==0 ) return 0;

  pTriggerStep->op = TK_DELETE;
  pTriggerStep->target  = *pTableName;
  pTriggerStep->pWhere = pWhere;
  pTriggerStep->orconf = OE_Default;
  sqlitePersistTriggerStep(pTriggerStep);

  return pTriggerStep;
}
trigger.c343
VOIDsqliteDeleteTrigger(Trigger *pTrigger)
void sqliteDeleteTrigger(Trigger *pTrigger){
  if( pTrigger==0 ) return;
  sqliteDeleteTriggerStep(pTrigger->step_list);
  sqliteFree(pTrigger->name);
  sqliteFree(pTrigger->table);
  sqliteExprDelete(pTrigger->pWhen);
  sqliteIdListDelete(pTrigger->pColumns);
  if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
  sqliteFree(pTrigger);
}
trigger.c361
VOIDsqliteDropTrigger(Parse *pParse, SrcList *pName)
void sqliteDropTrigger(Parse *pParse, SrcList *pName){
  Trigger *pTrigger;
  int i;
  const char *zDb;
  const char *zName;
  int nName;
  sqlite *db = pParse->db;

  if( sqlite_malloc_failed ) goto drop_trigger_cleanup;
  assert( pName->nSrc==1 );
  zDb = pName->a[0].zDatabase;
  zName = pName->a[0].zName;
  nName = strlen(zName);
  for(i=0; inDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqliteStrICmp(db->aDb[j].zName, zDb) ) continue;
    pTrigger = sqliteHashFind(&(db->aDb[j].trigHash), zName, nName+1);
    if( pTrigger ) break;
  }
  if( !pTrigger ){
    sqliteErrorMsg(pParse, "no such trigger: %S", pName, 0);
    goto drop_trigger_cleanup;
  }
  sqliteDropTriggerPtr(pParse, pTrigger, 0);

drop_trigger_cleanup:
  sqliteSrcListDelete(pName);
}
trigger.c375
VOIDsqliteDropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested)
void sqliteDropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){
  Table   *pTable;
  Vdbe *v;
  sqlite *db = pParse->db;

  assert( pTrigger->iDbnDb );
  if( pTrigger->iDb>=2 ){
    sqliteErrorMsg(pParse, "triggers may not be removed from "
       "auxiliary database %s", db->aDb[pTrigger->iDb].zName);
    return;
  }
  pTable = sqliteFindTable(db, pTrigger->table,db->aDb[pTrigger->iTabDb].zName);
  assert(pTable);
  assert( pTable->iDb==pTrigger->iDb || pTrigger->iDb==1 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_TRIGGER;
    const char *zDb = db->aDb[pTrigger->iDb].zName;
    const char *zTab = SCHEMA_TABLE(pTrigger->iDb);
    if( pTrigger->iDb ) code = SQLITE_DROP_TEMP_TRIGGER;
    if( sqliteAuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
      sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      return;
    }
  }
#endif

  /* Generate code to destroy the database record of the trigger.
  */
  if( pTable!=0 && !nested && (v = sqliteGetVdbe(pParse))!=0 ){
    int base;
    static VdbeOpList dropTrigger[] = {
      { OP_Rewind,     0, ADDR(9),  0},
      { OP_String,     0, 0,        0}, /* 1 */
      { OP_Column,     0, 1,        0},
      { OP_Ne,         0, ADDR(8),  0},
      { OP_String,     0, 0,        "trigger"},
      { OP_Column,     0, 0,        0},
      { OP_Ne,         0, ADDR(8),  0},
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(1),  0}, /* 8 */
    };

    sqliteBeginWriteOperation(pParse, 0, 0);
    sqliteOpenMasterTable(v, pTrigger->iDb);
    base = sqliteVdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger);
    sqliteVdbeChangeP3(v, base+1, pTrigger->name, 0);
    if( pTrigger->iDb==0 ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    sqliteEndWriteOperation(pParse);
  }

  /*
   * If this is not an "explain", then delete the trigger structure.
   */
  if( !pParse->explain ){
    const char *zName = pTrigger->name;
    int nName = strlen(zName);
    if( pTable->pTrigger == pTrigger ){
      pTable->pTrigger = pTrigger->pNext;
    }else{
      Trigger *cc = pTable->pTrigger;
      while( cc ){ 
        if( cc->pNext == pTrigger ){
          cc->pNext = cc->pNext->pNext;
          break;
        }
        cc = cc->pNext;
      }
      assert(cc);
    }
    sqliteHashInsert(&(db->aDb[pTrigger->iDb].trigHash), zName, nName+1, 0);
    sqliteDeleteTrigger(pTrigger);
  }
}
trigger.c417
STATIC INTcheckColumnOverLap(IdList *pIdList, ExprList *pEList)
static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
  int e;
  if( !pIdList || !pEList ) return 1;
  for(e=0; enExpr; e++){
    if( sqliteIdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
  }
  return 0; 
}

/* A global variable that is TRUE if we should always set up temp tables for
 * for triggers, even if there are no triggers to code. This is used to test 
 * how much overhead the triggers algorithm is causing.
 *
 * This flag can be set or cleared using the "trigger_overhead_test" pragma.
 * The pragma is not documented since it is not really part of the interface
 * to SQLite, just the test procedure.
*/
int always_code_trigger_setup = 0;
trigger.c500
INTsqliteTriggersExist( Parse *pParse, Trigger *pTrigger, int op, int tr_tm, int foreach, ExprList *pChanges )
int sqliteTriggersExist(
  Parse *pParse,          /* Used to check for recursive triggers */
  Trigger *pTrigger,      /* A list of triggers associated with a table */
  int op,                 /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
  int tr_tm,              /* one of TK_BEFORE, TK_AFTER */
  int foreach,            /* one of TK_ROW or TK_STATEMENT */
  ExprList *pChanges      /* Columns that change in an UPDATE statement */
){
  Trigger * pTriggerCursor;

  if( always_code_trigger_setup ){
    return 1;
  }

  pTriggerCursor = pTrigger;
  while( pTriggerCursor ){
    if( pTriggerCursor->op == op && 
        pTriggerCursor->tr_tm == tr_tm && 
        pTriggerCursor->foreach == foreach &&
        checkColumnOverLap(pTriggerCursor->pColumns, pChanges) ){
      TriggerStack * ss;
      ss = pParse->trigStack;
      while( ss && ss->pTrigger != pTrigger ){
        ss = ss->pNext;
      }
      if( !ss )return 1;
    }
    pTriggerCursor = pTriggerCursor->pNext;
  }

  return 0;
}
trigger.c528
STATIC SRCLIST targetSrcList( Parse *pParse, TriggerStep *pStep )
static SrcList *targetSrcList(
  Parse *pParse,       /* The parsing context */
  TriggerStep *pStep   /* The trigger containing the target token */
){
  Token sDb;           /* Dummy database name token */
  int iDb;             /* Index of the database to use */
  SrcList *pSrc;       /* SrcList to be returned */

  iDb = pStep->pTrig->iDb;
  if( iDb==0 || iDb>=2 ){
    assert( iDbdb->nDb );
    sDb.z = pParse->db->aDb[iDb].zName;
    sDb.n = strlen(sDb.z);
    pSrc = sqliteSrcListAppend(0, &sDb, &pStep->target);
  } else {
    pSrc = sqliteSrcListAppend(0, &pStep->target, 0);
  }
  return pSrc;
}
trigger.c566
STATIC INTcodeTriggerProgram( Parse *pParse, TriggerStep *pStepList, int orconfin )
static int codeTriggerProgram(
  Parse *pParse,            /* The parser context */
  TriggerStep *pStepList,   /* List of statements inside the trigger body */
  int orconfin              /* Conflict algorithm. (OE_Abort, etc) */  
){
  TriggerStep * pTriggerStep = pStepList;
  int orconf;

  while( pTriggerStep ){
    int saveNTab = pParse->nTab;
 
    orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
    pParse->trigStack->orconf = orconf;
    switch( pTriggerStep->op ){
      case TK_SELECT: {
        Select * ss = sqliteSelectDup(pTriggerStep->pSelect);             
        assert(ss);
        assert(ss->pSrc);
        sqliteSelect(pParse, ss, SRT_Discard, 0, 0, 0, 0);
        sqliteSelectDelete(ss);
        break;
      }
      case TK_UPDATE: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
        sqliteUpdate(pParse, pSrc,
                sqliteExprListDup(pTriggerStep->pExprList), 
                sqliteExprDup(pTriggerStep->pWhere), orconf);
        sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
        break;
      }
      case TK_INSERT: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqliteInsert(pParse, pSrc,
          sqliteExprListDup(pTriggerStep->pExprList), 
          sqliteSelectDup(pTriggerStep->pSelect), 
          sqliteIdListDup(pTriggerStep->pIdList), orconf);
        break;
      }
      case TK_DELETE: {
        SrcList *pSrc;
        sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
        pSrc = targetSrcList(pParse, pTriggerStep);
        sqliteDeleteFrom(pParse, pSrc, sqliteExprDup(pTriggerStep->pWhere));
        sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
        break;
      }
      default:
        assert(0);
    } 
    pParse->nTab = saveNTab;
    pTriggerStep = pTriggerStep->pNext;
  }

  return 0;
}
trigger.c596
INTsqliteCodeRowTrigger( Parse *pParse, int op, ExprList *pChanges, int tr_tm, Table *pTab, int newIdx, int oldIdx, int orconf, int ignoreJump )
int sqliteCodeRowTrigger(
  Parse *pParse,       /* Parse context */
  int op,              /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
  ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
  int tr_tm,           /* One of TK_BEFORE, TK_AFTER */
  Table *pTab,         /* The table to code triggers from */
  int newIdx,          /* The indice of the "new" row to access */
  int oldIdx,          /* The indice of the "old" row to access */
  int orconf,          /* ON CONFLICT policy */
  int ignoreJump       /* Instruction to jump to for RAISE(IGNORE) */
){
  Trigger * pTrigger;
  TriggerStack * pTriggerStack;

  assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
  assert(tr_tm == TK_BEFORE || tr_tm == TK_AFTER );

  assert(newIdx != -1 || oldIdx != -1);

  pTrigger = pTab->pTrigger;
  while( pTrigger ){
    int fire_this = 0;

    /* determine whether we should code this trigger */
    if( pTrigger->op == op && pTrigger->tr_tm == tr_tm && 
        pTrigger->foreach == TK_ROW ){
      fire_this = 1;
      pTriggerStack = pParse->trigStack;
      while( pTriggerStack ){
        if( pTriggerStack->pTrigger == pTrigger ){
          fire_this = 0;
        }
        pTriggerStack = pTriggerStack->pNext;
      }
      if( op == TK_UPDATE && pTrigger->pColumns &&
          !checkColumnOverLap(pTrigger->pColumns, pChanges) ){
        fire_this = 0;
      }
    }

    if( fire_this && (pTriggerStack = sqliteMalloc(sizeof(TriggerStack)))!=0 ){
      int endTrigger;
      SrcList dummyTablist;
      Expr * whenExpr;
      AuthContext sContext;

      dummyTablist.nSrc = 0;

      /* Push an entry on to the trigger stack */
      pTriggerStack->pTrigger = pTrigger;
      pTriggerStack->newIdx = newIdx;
      pTriggerStack->oldIdx = oldIdx;
      pTriggerStack->pTab = pTab;
      pTriggerStack->pNext = pParse->trigStack;
      pTriggerStack->ignoreJump = ignoreJump;
      pParse->trigStack = pTriggerStack;
      sqliteAuthContextPush(pParse, &sContext, pTrigger->name);

      /* code the WHEN clause */
      endTrigger = sqliteVdbeMakeLabel(pParse->pVdbe);
      whenExpr = sqliteExprDup(pTrigger->pWhen);
      if( sqliteExprResolveIds(pParse, &dummyTablist, 0, whenExpr) ){
        pParse->trigStack = pParse->trigStack->pNext;
        sqliteFree(pTriggerStack);
        sqliteExprDelete(whenExpr);
        return 1;
      }
      sqliteExprIfFalse(pParse, whenExpr, endTrigger, 1);
      sqliteExprDelete(whenExpr);

      sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPush, 0, 0);
      codeTriggerProgram(pParse, pTrigger->step_list, orconf); 
      sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPop, 0, 0);

      /* Pop the entry off the trigger stack */
      pParse->trigStack = pParse->trigStack->pNext;
      sqliteAuthContextPop(&sContext);
      sqliteFree(pTriggerStack);

      sqliteVdbeResolveLabel(pParse->pVdbe, endTrigger);
    }
    pTrigger = pTrigger->pNext;
  }

  return 0;
}
trigger.c659
update.c
TypeFunctionSourceLine
VOIDsqliteUpdate( Parse *pParse, SrcList *pTabList, ExprList *pChanges, Expr *pWhere, int onError )
void sqliteUpdate(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table in which we should change things */
  ExprList *pChanges,    /* Things to be changed */
  Expr *pWhere,          /* The WHERE clause.  May be null */
  int onError            /* How to handle constraint errors */
){
  int i, j;              /* Loop counters */
  Table *pTab;           /* The table to be updated */
  int loopStart;         /* VDBE instruction address of the start of the loop */
  int jumpInst;          /* Addr of VDBE instruction to jump out of loop */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Vdbe *v;               /* The virtual database engine */
  Index *pIdx;           /* For looping over indices */
  int nIdx;              /* Number of indices that need updating */
  int nIdxTotal;         /* Total number of indices */
  int iCur;              /* VDBE Cursor number of pTab */
  sqlite *db;            /* The database structure */
  Index **apIdx = 0;     /* An array of indices that need updating too */
  char *aIdxUsed = 0;    /* aIdxUsed[i]==1 if the i-th index is used */
  int *aXRef = 0;        /* aXRef[i] is the index in pChanges->a[] of the
                         ** an expression for the i-th column of the table.
                         ** aXRef[i]==-1 if the i-th column is not changed. */
  int chngRecno;         /* True if the record number is being changed */
  Expr *pRecnoExpr;      /* Expression defining the new record number */
  int openAll;           /* True if all indices need to be opened */
  int isView;            /* Trying to update a view */
  int iStackDepth;       /* Index of memory cell holding stack depth */
  AuthContext sContext;  /* The authorization context */

  int before_triggers;         /* True if there are any BEFORE triggers */
  int after_triggers;          /* True if there are any AFTER triggers */
  int row_triggers_exist = 0;  /* True if any row triggers exist */

  int newIdx      = -1;  /* index of trigger "new" temp table       */
  int oldIdx      = -1;  /* index of trigger "old" temp table       */

  sContext.pParse = 0;
  if( pParse->nErr || sqlite_malloc_failed ) goto update_cleanup;
  db = pParse->db;
  assert( pTabList->nSrc==1 );
  iStackDepth = pParse->nMem++;

  /* Locate the table which we want to update. 
  */
  pTab = sqliteSrcListLookup(pParse, pTabList);
  if( pTab==0 ) goto update_cleanup;
  before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, 
            TK_UPDATE, TK_BEFORE, TK_ROW, pChanges);
  after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, 
            TK_UPDATE, TK_AFTER, TK_ROW, pChanges);
  row_triggers_exist = before_triggers || after_triggers;
  isView = pTab->pSelect!=0;
  if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
    goto update_cleanup;
  }
  if( isView ){
    if( sqliteViewGetColumnNames(pParse, pTab) ){
      goto update_cleanup;
    }
  }
  aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
  if( aXRef==0 ) goto update_cleanup;
  for(i=0; inCol; i++) aXRef[i] = -1;

  /* If there are FOR EACH ROW triggers, allocate cursors for the
  ** special OLD and NEW tables
  */
  if( row_triggers_exist ){
    newIdx = pParse->nTab++;
    oldIdx = pParse->nTab++;
  }

  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  pTabList->a[0].iCursor = iCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    pParse->nTab++;
  }

  /* Resolve the column names in all the expressions of the
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each
  ** column to be updated, make sure we have authorization to change
  ** that column.
  */
  chngRecno = 0;
  for(i=0; inExpr; i++){
    if( sqliteExprResolveIds(pParse, pTabList, 0, pChanges->a[i].pExpr) ){
      goto update_cleanup;
    }
    if( sqliteExprCheck(pParse, pChanges->a[i].pExpr, 0, 0) ){
      goto update_cleanup;
    }
    for(j=0; jnCol; j++){
      if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
        if( j==pTab->iPKey ){
          chngRecno = 1;
          pRecnoExpr = pChanges->a[i].pExpr;
        }
        aXRef[j] = i;
        break;
      }
    }
    if( j>=pTab->nCol ){
      if( sqliteIsRowid(pChanges->a[i].zName) ){
        chngRecno = 1;
        pRecnoExpr = pChanges->a[i].pExpr;
      }else{
        sqliteErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
        goto update_cleanup;
      }
    }
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int rc;
      rc = sqliteAuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
                           pTab->aCol[j].zName, db->aDb[pTab->iDb].zName);
      if( rc==SQLITE_DENY ){
        goto update_cleanup;
      }else if( rc==SQLITE_IGNORE ){
        aXRef[j] = -1;
      }
    }
#endif
  }

  /* Allocate memory for the array apIdx[] and fill it with pointers to every
  ** index that needs to be updated.  Indices only need updating if their
  ** key includes one of the columns named in pChanges or if the record
  ** number of the original table entry is changing.
  */
  for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
    if( chngRecno ){
      i = 0;
    }else {
      for(i=0; inColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
      }
    }
    if( inColumn ) nIdx++;
  }
  if( nIdxTotal>0 ){
    apIdx = sqliteMalloc( sizeof(Index*) * nIdx + nIdxTotal );
    if( apIdx==0 ) goto update_cleanup;
    aIdxUsed = (char*)&apIdx[nIdx];
  }
  for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    if( chngRecno ){
      i = 0;
    }else{
      for(i=0; inColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
      }
    }
    if( inColumn ){
      apIdx[nIdx++] = pIdx;
      aIdxUsed[j] = 1;
    }else{
      aIdxUsed[j] = 0;
    }
  }

  /* Resolve the column names in all the expressions in the
  ** WHERE clause.
  */
  if( pWhere ){
    if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
      goto update_cleanup;
    }
    if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
      goto update_cleanup;
    }
  }

  /* Start the view context
  */
  if( isView ){
    sqliteAuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* Begin generating code.
  */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  sqliteBeginWriteOperation(pParse, 1, pTab->iDb);

  /* If we are trying to update a view, construct that view into
  ** a temporary table.
  */
  if( isView ){
    Select *pView;
    pView = sqliteSelectDup(pTab->pSelect);
    sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
    sqliteSelectDelete(pView);
  }

  /* Begin the database scan
  */
  pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
  if( pWInfo==0 ) goto update_cleanup;

  /* Remember the index of every item to be updated.
  */
  sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);

  /* End the database scan loop.
  */
  sqliteWhereEnd(pWInfo);

  /* Initialize the count of updated rows
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
    sqliteVdbeAddOp(v, OP_Integer, 0, 0);
  }

  if( row_triggers_exist ){
    /* Create pseudo-tables for NEW and OLD
    */
    sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
    sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);

    /* The top of the update loop for when there are triggers.
    */
    sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
    sqliteVdbeAddOp(v, OP_StackDepth, 0, 0);
    sqliteVdbeAddOp(v, OP_MemStore, iStackDepth, 1);
    loopStart = sqliteVdbeAddOp(v, OP_MemLoad, iStackDepth, 0);
    sqliteVdbeAddOp(v, OP_StackReset, 0, 0);
    jumpInst = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
    sqliteVdbeAddOp(v, OP_Dup, 0, 0);

    /* Open a cursor and make it point to the record that is
    ** being updated.
    */
    sqliteVdbeAddOp(v, OP_Dup, 0, 0);
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
      sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
    }
    sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);

    /* Generate the OLD table
    */
    sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
    sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);

    /* Generate the NEW table
    */
    if( chngRecno ){
      sqliteExprCode(pParse, pRecnoExpr);
    }else{
      sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
    }
    for(i=0; inCol; i++){
      if( i==pTab->iPKey ){
        sqliteVdbeAddOp(v, OP_String, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){
        sqliteVdbeAddOp(v, OP_Column, iCur, i);
      }else{
        sqliteExprCode(pParse, pChanges->a[j].pExpr);
      }
    }
    sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Close, iCur, 0);
    }

    /* Fire the BEFORE and INSTEAD OF triggers
    */
    if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab, 
          newIdx, oldIdx, onError, loopStart) ){
      goto update_cleanup;
    }
  }

  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need
    ** to be deleting some records.
    */
    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqliteVdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
    if( onError==OE_Replace ){
      openAll = 1;
    }else{
      openAll = 0;
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->onError==OE_Replace ){
          openAll = 1;
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
        sqliteVdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
    ** Also, the old data is needed to delete the old index entires.
    ** So make the cursor point at the old record.
    */
    if( !row_triggers_exist ){
      sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
      jumpInst = loopStart = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
    }
    sqliteVdbeAddOp(v, OP_NotExists, iCur, loopStart);

    /* If the record number will change, push the record number as it
    ** will be after the update. (The old record number is currently
    ** on top of the stack.)
    */
    if( chngRecno ){
      sqliteExprCode(pParse, pRecnoExpr);
      sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
    }

    /* Compute new data for this record.  
    */
    for(i=0; inCol; i++){
      if( i==pTab->iPKey ){
        sqliteVdbeAddOp(v, OP_String, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){
        sqliteVdbeAddOp(v, OP_Column, iCur, i);
      }else{
        sqliteExprCode(pParse, pChanges->a[j].pExpr);
      }
    }

    /* Do constraint checks
    */
    sqliteGenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1,
                                   onError, loopStart);

    /* Delete the old indices for the current record.
    */
    sqliteGenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed);

    /* If changing the record number, delete the old record.
    */
    if( chngRecno ){
      sqliteVdbeAddOp(v, OP_Delete, iCur, 0);
    }

    /* Create the new index entries and the new record.
    */
    sqliteCompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1);
  }

  /* Increment the row counter 
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack){
    sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
  }

  /* If there are triggers, close all the cursors after each iteration
  ** through the loop.  The fire the after triggers.
  */
  if( row_triggers_exist ){
    if( !isView ){
      for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
        if( openAll || aIdxUsed[i] )
          sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
      }
      sqliteVdbeAddOp(v, OP_Close, iCur, 0);
      pParse->nTab = iCur;
    }
    if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab, 
          newIdx, oldIdx, onError, loopStart) ){
      goto update_cleanup;
    }
  }

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  sqliteVdbeAddOp(v, OP_Goto, 0, loopStart);
  sqliteVdbeChangeP2(v, jumpInst, sqliteVdbeCurrentAddr(v));
  sqliteVdbeAddOp(v, OP_ListReset, 0, 0);

  /* Close all tables if there were no FOR EACH ROW triggers */
  if( !row_triggers_exist ){
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
      }
    }
    sqliteVdbeAddOp(v, OP_Close, iCur, 0);
    pParse->nTab = iCur;
  }else{
    sqliteVdbeAddOp(v, OP_Close, newIdx, 0);
    sqliteVdbeAddOp(v, OP_Close, oldIdx, 0);
  }

  sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
  sqliteEndWriteOperation(pParse);

  /*
  ** Return the number of rows that were changed.
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
    sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows updated", P3_STATIC);
    sqliteVdbeAddOp(v, OP_Callback, 1, 0);
  }

update_cleanup:
  sqliteAuthContextPop(&sContext);
  sqliteFree(apIdx);
  sqliteFree(aXRef);
  sqliteSrcListDelete(pTabList);
  sqliteExprListDelete(pChanges);
  sqliteExprDelete(pWhere);
  return;
}
update.c19
util.c
TypeFunctionSourceLine
VOID sqliteMalloc_(int n, int bZero, char *zFile, int line)
void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
  void *p;
  int *pi;
  int i, k;
  if( sqlite_iMallocFail>=0 ){
    sqlite_iMallocFail--;
    if( sqlite_iMallocFail==0 ){
      sqlite_malloc_failed++;
#if MEMORY_DEBUG>1
      fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
              n, zFile,line);
#endif
      sqlite_iMallocFail--;
      return 0;
    }
  }
  if( n==0 ) return 0;
  k = (n+sizeof(int)-1)/sizeof(int);
  pi = malloc( (N_GUARD*2+1+k)*sizeof(int));
  if( pi==0 ){
    sqlite_malloc_failed++;
    return 0;
  }
  sqlite_nMalloc++;
  for(i=0; i1
  fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
      ++memcnt, n, (int)p, zFile,line);
#endif
  return p;
}
util.c51
VOIDsqliteCheckMemory(void *p, int N)
void sqliteCheckMemory(void *p, int N){
  int *pi = p;
  int n, i, k;
  pi -= N_GUARD+1;
  for(i=0; i=0 && N
util.c91
VOIDsqliteFree_(void *p, char *zFile, int line)
void sqliteFree_(void *p, char *zFile, int line){
  if( p ){
    int *pi, i, k, n;
    pi = p;
    pi -= N_GUARD+1;
    sqlite_nFree++;
    for(i=0; i1
    fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
         ++memcnt, n, (int)p, zFile,line);
#endif
    free(pi);
  }
}
util.c113
VOID sqliteRealloc_(void *oldP, int n, char *zFile, int line)
void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
  int *oldPi, *pi, i, k, oldN, oldK;
  void *p;
  if( oldP==0 ){
    return sqliteMalloc_(n,1,zFile,line);
  }
  if( n==0 ){
    sqliteFree_(oldP,zFile,line);
    return 0;
  }
  oldPi = oldP;
  oldPi -= N_GUARD+1;
  if( oldPi[0]!=0xdead1122 ){
    fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP);
    return 0;
  }
  oldN = oldPi[N_GUARD];
  oldK = (oldN+sizeof(int)-1)/sizeof(int);
  for(i=0; ioldN ? oldN : n);
  if( n>oldN ){
    memset(&((char*)p)[oldN], 0, n-oldN);
  }
  memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int));
  free(oldPi);
#if MEMORY_DEBUG>1
  fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
    ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
#endif
  return p;
}
util.c145
VOIDsqliteStrRealloc(char **pz)
void sqliteStrRealloc(char **pz){
  char *zNew;
  if( pz==0 || *pz==0 ) return;
  zNew = malloc( strlen(*pz) + 1 );
  if( zNew==0 ){
    sqlite_malloc_failed++;
    sqliteFree(*pz);
    *pz = 0;
  }
  strcpy(zNew, *pz);
  sqliteFree(*pz);
  *pz = zNew;
}
util.c198
CHAR sqliteStrDup_(const char *z, char *zFile, int line)
char *sqliteStrDup_(const char *z, char *zFile, int line){
  char *zNew;
  if( z==0 ) return 0;
  zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
  if( zNew ) strcpy(zNew, z);
  return zNew;
}
util.c220
CHAR sqliteStrNDup_(const char *z, int n, char *zFile, int line)
char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
  char *zNew;
  if( z==0 ) return 0;
  zNew = sqliteMalloc_(n+1, 0, zFile, line);
  if( zNew ){
    memcpy(zNew, z, n);
    zNew[n] = 0;
  }
  return zNew;
}
#endif /* MEMORY_DEBUG */

util.c230
VOID sqliteMalloc(int n)
void *sqliteMalloc(int n){
  void *p;
  if( (p = malloc(n))==0 ){
    if( n>0 ) sqlite_malloc_failed++;
  }else{
    memset(p, 0, n);
  }
  return p;
}
util.c248
VOID sqliteMallocRaw(int n)
void *sqliteMallocRaw(int n){
  void *p;
  if( (p = malloc(n))==0 ){
    if( n>0 ) sqlite_malloc_failed++;
  }
  return p;
}
util.c262
VOIDsqliteFree(void *p)
void sqliteFree(void *p){
  if( p ){
    free(p);
  }
}
util.c274
VOID sqliteRealloc(void *p, int n)
void *sqliteRealloc(void *p, int n){
  void *p2;
  if( p==0 ){
    return sqliteMalloc(n);
  }
  if( n==0 ){
    sqliteFree(p);
    return 0;
  }
  p2 = realloc(p, n);
  if( p2==0 ){
    sqlite_malloc_failed++;
  }
  return p2;
}
util.c283
CHAR sqliteStrDup(const char *z)
char *sqliteStrDup(const char *z){
  char *zNew;
  if( z==0 ) return 0;
  zNew = sqliteMallocRaw(strlen(z)+1);
  if( zNew ) strcpy(zNew, z);
  return zNew;
}
util.c304
CHAR sqliteStrNDup(const char *z, int n)
char *sqliteStrNDup(const char *z, int n){
  char *zNew;
  if( z==0 ) return 0;
  zNew = sqliteMallocRaw(n+1);
  if( zNew ){
    memcpy(zNew, z, n);
    zNew[n] = 0;
  }
  return zNew;
}
util.c314
VOIDsqliteSetString(char **pz, const char *zFirst, ...)
void sqliteSetString(char **pz, const char *zFirst, ...){
  va_list ap;
  int nByte;
  const char *z;
  char *zResult;

  if( pz==0 ) return;
  nByte = strlen(zFirst) + 1;
  va_start(ap, zFirst);
  while( (z = va_arg(ap, const char*))!=0 ){
    nByte += strlen(z);
  }
  va_end(ap);
  sqliteFree(*pz);
  *pz = zResult = sqliteMallocRaw( nByte );
  if( zResult==0 ){
    return;
  }
  strcpy(zResult, zFirst);
  zResult += strlen(zResult);
  va_start(ap, zFirst);
  while( (z = va_arg(ap, const char*))!=0 ){
    strcpy(zResult, z);
    zResult += strlen(zResult);
  }
  va_end(ap);
#ifdef MEMORY_DEBUG
#if MEMORY_DEBUG>1
  fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
#endif
#endif
}
util.c326
VOIDsqliteSetNString(char **pz, ...)
void sqliteSetNString(char **pz, ...){
  va_list ap;
  int nByte;
  const char *z;
  char *zResult;
  int n;

  if( pz==0 ) return;
  nByte = 0;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    n = va_arg(ap, int);
    if( n<=0 ) n = strlen(z);
    nByte += n;
  }
  va_end(ap);
  sqliteFree(*pz);
  *pz = zResult = sqliteMallocRaw( nByte + 1 );
  if( zResult==0 ) return;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    n = va_arg(ap, int);
    if( n<=0 ) n = strlen(z);
    strncpy(zResult, z, n);
    zResult += n;
  }
  *zResult = 0;
#ifdef MEMORY_DEBUG
#if MEMORY_DEBUG>1
  fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
#endif
#endif
  va_end(ap);
}
util.c366
VOIDsqliteErrorMsg(Parse *pParse, const char *zFormat, ...)
void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){
  va_list ap;
  pParse->nErr++;
  sqliteFree(pParse->zErrMsg);
  va_start(ap, zFormat);
  pParse->zErrMsg = sqliteVMPrintf(zFormat, ap);
  va_end(ap);
}
util.c408
VOIDsqliteDequote(char *z)
void sqliteDequote(char *z){
  int quote;
  int i, j;
  if( z==0 ) return;
  quote = z[0];
  switch( quote ){
    case '\'':  break;
    case '"':   break;
    case '[':   quote = ']';  break;
    default:    return;
  }
  for(i=1, j=0; z[i]; i++){
    if( z[i]==quote ){
      if( z[i+1]==quote ){
        z[j++] = quote;
        i++;
      }else{
        z[j++] = 0;
        break;
      }
    }else{
      z[j++] = z[i];
    }
  }
}

/* An array to map all upper-case characters into their corresponding
** lower-case character. 
*/
static unsigned char UpperToLower[] = {
      0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
     18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
     36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
     54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
    104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
    122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
    108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
    126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
    144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
    162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
    180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
    198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
    216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
    234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
    252,253,254,255
};
util.c427
INTsqliteHashNoCase(const char *z, int n)
int sqliteHashNoCase(const char *z, int n){
  int h = 0;
  if( n<=0 ) n = strlen(z);
  while( n > 0  ){
    h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
    n--;
  }
  return h & 0x7fffffff;
}
util.c484
INTsqliteStrICmp(const char *zLeft, const char *zRight)
int sqliteStrICmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];
}
util.c498
INTsqliteStrNICmp(const char *zLeft, const char *zRight, int N)
int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
  register unsigned char *a, *b;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}
util.c509
INTsqliteIsNumber(const char *z)
int sqliteIsNumber(const char *z){
  if( *z=='-' || *z=='+' ) z++;
  if( !isdigit(*z) ){
    return 0;
  }
  z++;
  while( isdigit(*z) ){ z++; }
  if( *z=='.' ){
    z++;
    if( !isdigit(*z) ) return 0;
    while( isdigit(*z) ){ z++; }
  }
  if( *z=='e' || *z=='E' ){
    z++;
    if( *z=='+' || *z=='-' ) z++;
    if( !isdigit(*z) ) return 0;
    while( isdigit(*z) ){ z++; }
  }
  return *z==0;
}
util.c517
DOUBLEsqliteAtoF(const char *z, const char **pzEnd)
double sqliteAtoF(const char *z, const char **pzEnd){
  int sign = 1;
  LONGDOUBLE_TYPE v1 = 0.0;
  if( *z=='-' ){
    sign = -1;
    z++;
  }else if( *z=='+' ){
    z++;
  }
  while( isdigit(*z) ){
    v1 = v1*10.0 + (*z - '0');
    z++;
  }
  if( *z=='.' ){
    LONGDOUBLE_TYPE divisor = 1.0;
    z++;
    while( isdigit(*z) ){
      v1 = v1*10.0 + (*z - '0');
      divisor *= 10.0;
      z++;
    }
    v1 /= divisor;
  }
  if( *z=='e' || *z=='E' ){
    int esign = 1;
    int eval = 0;
    LONGDOUBLE_TYPE scale = 1.0;
    z++;
    if( *z=='-' ){
      esign = -1;
      z++;
    }else if( *z=='+' ){
      z++;
    }
    while( isdigit(*z) ){
      eval = eval*10 + *z - '0';
      z++;
    }
    while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
    while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
    while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
    while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
    if( esign<0 ){
      v1 /= scale;
    }else{
      v1 *= scale;
    }
  }
  if( pzEnd ) *pzEnd = z;
  return sign<0 ? -v1 : v1;
}
util.c544
INTsqliteFitsIn32Bits(const char *zNum)
int sqliteFitsIn32Bits(const char *zNum){
  int i, c;
  if( *zNum=='-' || *zNum=='+' ) zNum++;
  for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
  return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
}
util.c608
INTsqliteCompare(const char *atext, const char *btext)
int sqliteCompare(const char *atext, const char *btext){
  int result;
  int isNumA, isNumB;
  if( atext==0 ){
    return -1;
  }else if( btext==0 ){
    return 1;
  }
  isNumA = sqliteIsNumber(atext);
  isNumB = sqliteIsNumber(btext);
  if( isNumA ){
    if( !isNumB ){
      result = -1;
    }else{
      double rA, rB;
      rA = sqliteAtoF(atext, 0);
      rB = sqliteAtoF(btext, 0);
      if( rArB ){
        result = +1;
      }else{
        result = 0;
      }
    }
  }else if( isNumB ){
    result = +1;
  }else {
    result = strcmp(atext, btext);
  }
  return result; 
}
util.c626
INTsqliteSortCompare(const char *a, const char *b)
int sqliteSortCompare(const char *a, const char *b){
  int res = 0;
  int isNumA, isNumB;
  int dir = 0;

  while( res==0 && *a && *b ){
    if( a[0]=='N' || b[0]=='N' ){
      if( a[0]==b[0] ){
        a += 2;
        b += 2;
        continue;
      }
      if( a[0]=='N' ){
        dir = b[0];
        res = -1;
      }else{
        dir = a[0];
        res = +1;
      }
      break;
    }
    assert( a[0]==b[0] );
    if( (dir=a[0])=='A' || a[0]=='D' ){
      res = strcmp(&a[1],&b[1]);
      if( res ) break;
    }else{
      isNumA = sqliteIsNumber(&a[1]);
      isNumB = sqliteIsNumber(&b[1]);
      if( isNumA ){
        double rA, rB;
        if( !isNumB ){
          res = -1;
          break;
        }
        rA = sqliteAtoF(&a[1], 0);
        rB = sqliteAtoF(&b[1], 0);
        if( rArB ){
          res = +1;
          break;
        }
      }else if( isNumB ){
        res = +1;
        break;
      }else{
        res = strcmp(&a[1],&b[1]);
        if( res ) break;
      }
    }
    a += strlen(&a[1]) + 2;
    b += strlen(&b[1]) + 2;
  }
  if( dir=='-' || dir=='D' ) res = -res;
  return res;
}

util.c672
VOIDsqliteRealToSortable(double r, char *z)
void sqliteRealToSortable(double r, char *z){
  int neg;
  int exp;
  int cnt = 0;

  /* This array maps integers between 0 and 63 into base-64 digits.
  ** The digits must be chosen such at their ASCII codes are increasing.
  ** This means we can not use the traditional base-64 digit set. */
  static const char zDigit[] = 
     "0123456789"
     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
     "abcdefghijklmnopqrstuvwxyz"
     "|~";
  if( r<0.0 ){
    neg = 1;
    r = -r;
    *z++ = '-';
  } else {
    neg = 0;
    *z++ = '0';
  }
  exp = 0;

  if( r==0.0 ){
    exp = -1024;
  }else if( r<(0.5/64.0) ){
    while( r < 0.5/_64e64 && exp > -961  ){ r *= _64e64;  exp -= 64; }
    while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16;  exp -= 16; }
    while( r < 0.5/_64e4  && exp > -1021 ){ r *= _64e4;   exp -= 4; }
    while( r < 0.5/64.0   && exp > -1024 ){ r *= 64.0;    exp -= 1; }
  }else if( r>=0.5 ){
    while( r >= 0.5*_64e63 && exp < 960  ){ r *= 1.0/_64e64; exp += 64; }
    while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
    while( r >= 0.5*_64e3  && exp < 1020 ){ r *= 1.0/_64e4;  exp += 4; }
    while( r >= 0.5        && exp < 1023 ){ r *= 1.0/64.0;   exp += 1; }
  }
  if( neg ){
    exp = -exp;
    r = -r;
  }
  exp += 1024;
  r += 0.5;
  if( exp<0 ) return;
  if( exp>=2048 || r>=1.0 ){
    strcpy(z, "~~~~~~~~~~~~");
    return;
  }
  *z++ = zDigit[(exp>>6)&0x3f];
  *z++ = zDigit[exp & 0x3f];
  while( r>0.0 && cnt<10 ){
    int digit;
    r *= 64.0;
    digit = (int)r;
    assert( digit>=0 && digit<64 );
    *z++ = zDigit[digit & 0x3f];
    r -= digit;
    cnt++;
  }
  *z = 0;
}

#ifdef SQLITE_UTF8
/*
** X is a pointer to the first byte of a UTF-8 character.  Increment
** X so that it points to the next character.  This only works right
** if X points to a well-formed UTF-8 string.
*/
#define sqliteNextChar(X)  while( (0xc0&*++(X))==0x80 ){}
#define sqliteCharVal(X)   sqlite_utf8_to_int(X)

#else /* !defined(SQLITE_UTF8) */
util.c783
STATIC INTsqlite_utf8_to_int(const unsigned char *z)
static int sqlite_utf8_to_int(const unsigned char *z){
  int c;
  static const int initVal[] = {
      0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,
     15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
     30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,  43,  44,
     45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,  57,  58,  59,
     60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,
     75,  76,  77,  78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,
     90,  91,  92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104,
    105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
    120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
    135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
    150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
    165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
    180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,   0,   1,   2,
      3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16,  17,
     18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,   0,
      1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
      0,   1,   2,   3,   4,   5,   6,   7,   0,   1,   2,   3,   0,   1, 254,
    255,
  };
  c = initVal[*(z++)];
  while( (0xc0&*z)==0x80 ){
    c = (c<<6) | (0x3f&*(z++));
  }
  return c;
}
util.c879
INTsqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString)
int 
sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
  register int c;
  int invert;
  int seen;
  int c2;

  while( (c = *zPattern)!=0 ){
    switch( c ){
      case '*':
        while( (c=zPattern[1]) == '*' || c == '?' ){
          if( c=='?' ){
            if( *zString==0 ) return 0;
            sqliteNextChar(zString);
          }
          zPattern++;
        }
        if( c==0 ) return 1;
        if( c=='[' ){
          while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
            sqliteNextChar(zString);
          }
          return *zString!=0;
        }else{
          while( (c2 = *zString)!=0 ){
            while( c2 != 0 && c2 != c ){ c2 = *++zString; }
            if( c2==0 ) return 0;
            if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
            sqliteNextChar(zString);
          }
          return 0;
        }
      case '?': {
        if( *zString==0 ) return 0;
        sqliteNextChar(zString);
        zPattern++;
        break;
      }
      case '[': {
        int prior_c = 0;
        seen = 0;
        invert = 0;
        c = sqliteCharVal(zString);
        if( c==0 ) return 0;
        c2 = *++zPattern;
        if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
        if( c2==']' ){
          if( c==']' ) seen = 1;
          c2 = *++zPattern;
        }
        while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
          if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
            zPattern++;
            c2 = sqliteCharVal(zPattern);
            if( c>=prior_c && c<=c2 ) seen = 1;
            prior_c = 0;
          }else if( c==c2 ){
            seen = 1;
            prior_c = c2;
          }else{
            prior_c = c2;
          }
          sqliteNextChar(zPattern);
        }
        if( c2==0 || (seen ^ invert)==0 ) return 0;
        sqliteNextChar(zString);
        zPattern++;
        break;
      }
      default: {
        if( c != *zString ) return 0;
        zPattern++;
        zString++;
        break;
      }
    }
  }
  return *zString==0;
}
util.c914
INTsqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString)
int 
sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
  register int c;
  int c2;

  while( (c = UpperToLower[*zPattern])!=0 ){
    switch( c ){
      case '%': {
        while( (c=zPattern[1]) == '%' || c == '_' ){
          if( c=='_' ){
            if( *zString==0 ) return 0;
            sqliteNextChar(zString);
          }
          zPattern++;
        }
        if( c==0 ) return 1;
        c = UpperToLower[c];
        while( (c2=UpperToLower[*zString])!=0 ){
          while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
          if( c2==0 ) return 0;
          if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
          sqliteNextChar(zString);
        }
        return 0;
      }
      case '_': {
        if( *zString==0 ) return 0;
        sqliteNextChar(zString);
        zPattern++;
        break;
      }
      default: {
        if( c != UpperToLower[*zString] ) return 0;
        zPattern++;
        zString++;
        break;
      }
    }
  }
  return *zString==0;
}
util.c1022
INTsqliteSafetyOn(sqlite *db)
int sqliteSafetyOn(sqlite *db){
  if( db->magic==SQLITE_MAGIC_OPEN ){
    db->magic = SQLITE_MAGIC_BUSY;
    return 0;
  }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
             || db->want_to_close ){
    db->magic = SQLITE_MAGIC_ERROR;
    db->flags |= SQLITE_Interrupt;
  }
  return 1;
}
util.c1073
INTsqliteSafetyOff(sqlite *db)
int sqliteSafetyOff(sqlite *db){
  if( db->magic==SQLITE_MAGIC_BUSY ){
    db->magic = SQLITE_MAGIC_OPEN;
    return 0;
  }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
             || db->want_to_close ){
    db->magic = SQLITE_MAGIC_ERROR;
    db->flags |= SQLITE_Interrupt;
  }
  return 1;
}
util.c1103
INTsqliteSafetyCheck(sqlite *db)
int sqliteSafetyCheck(sqlite *db){
  if( db->pVdbe!=0 ){
    db->magic = SQLITE_MAGIC_ERROR;
    return 1;
  }
  return 0;
}
util.c1120
vacuum.c
TypeFunctionSourceLine
STATIC VOIDappendText(dynStr *p, const char *zText, int nText)
static void appendText(dynStr *p, const char *zText, int nText){
  if( nText<0 ) nText = strlen(zText);
  if( p->z==0 || p->nUsed + nText + 1 >= p->nAlloc ){
    char *zNew;
    p->nAlloc = p->nUsed + nText + 1000;
    zNew = sqliteRealloc(p->z, p->nAlloc);
    if( zNew==0 ){
      sqliteFree(p->z);
      memset(p, 0, sizeof(*p));
      return;
    }
    p->z = zNew;
  }
  memcpy(&p->z[p->nUsed], zText, nText+1);
  p->nUsed += nText;
}
vacuum.c48
STATIC VOIDappendQuoted(dynStr *p, const char *zText)
static void appendQuoted(dynStr *p, const char *zText){
  int i, j;
  appendText(p, "'", 1);
  for(i=j=0; zText[i]; i++){
    if( zText[i]=='\'' ){
      appendText(p, &zText[j], i-j+1);
      j = i + 1;
      appendText(p, "'", 1);
    }
  }
vacuum.c68
IF(j if( jvacuum.c81
} STATIC INTexecsql(char **pzErrMsg, sqlite *db, const char *zSql)
static int execsql(char **pzErrMsg, sqlite *db, const char *zSql){ 
  char *zErrMsg = 0;
  int rc;

  /* printf("***** executing *****\n%s\n", zSql); */
  rc = sqlite_exec(db, zSql, 0, 0, &zErrMsg);
  if( zErrMsg ){
    sqliteSetString(pzErrMsg, zErrMsg, (char*)0);
    sqlite_freemem(zErrMsg);
  }
  return rc;
}
vacuum.c87
STATIC INTvacuumCallback2(void *pArg, int argc, char **argv, char **NotUsed)
static int vacuumCallback2(void *pArg, int argc, char **argv, char **NotUsed){
  vacuumStruct *p = (vacuumStruct*)pArg;
  const char *zSep = "(";
  int i;

  if( argv==0 ) return 0;
  p->s2.nUsed = 0;
  appendText(&p->s2, "INSERT INTO ", -1);
  appendQuoted(&p->s2, p->zTable);
  appendText(&p->s2, " VALUES", -1);
  for(i=0; is2, zSep, 1);
    zSep = ",";
    if( argv[i]==0 ){
      appendText(&p->s2, "NULL", 4);
    }else{
      appendQuoted(&p->s2, argv[i]);
    }
  }
  appendText(&p->s2,")", 1);
  p->rc = execsql(p->pzErrMsg, p->dbNew, p->s2.z);
  return p->rc;
}
vacuum.c104
STATIC INTvacuumCallback1(void *pArg, int argc, char **argv, char **NotUsed)
static int vacuumCallback1(void *pArg, int argc, char **argv, char **NotUsed){
  vacuumStruct *p = (vacuumStruct*)pArg;
  int rc = 0;
  assert( argc==3 );
  if( argv==0 ) return 0;
  assert( argv[0]!=0 );
  assert( argv[1]!=0 );
  assert( argv[2]!=0 );
  rc = execsql(p->pzErrMsg, p->dbNew, argv[2]);
  if( rc==SQLITE_OK && strcmp(argv[0],"table")==0 ){
    char *zErrMsg = 0;
    p->s1.nUsed = 0;
    appendText(&p->s1, "SELECT * FROM ", -1);
    appendQuoted(&p->s1, argv[1]);
    p->zTable = argv[1];
    rc = sqlite_exec(p->dbOld, p->s1.z, vacuumCallback2, p, &zErrMsg);
    if( zErrMsg ){
      sqliteSetString(p->pzErrMsg, zErrMsg, (char*)0);
      sqlite_freemem(zErrMsg);
    }
  }
  if( rc!=SQLITE_ABORT ) p->rc = rc;
  return rc;
}
vacuum.c133
STATIC VOIDrandomName(unsigned char *zBuf)
static void randomName(unsigned char *zBuf){
  static const unsigned char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "0123456789";
  int i;
  sqliteRandomness(20, zBuf);
  for(i=0; i<20; i++){
    zBuf[i] = zChars[ zBuf[i]%(sizeof(zChars)-1) ];
  }
}
vacuum.c166
VOIDsqliteVacuum(Parse *pParse, Token *pTableName)
void sqliteVacuum(Parse *pParse, Token *pTableName){
  Vdbe *v = sqliteGetVdbe(pParse);
  sqliteVdbeAddOp(v, OP_Vacuum, 0, 0);
  return;
}
vacuum.c181
INTsqliteRunVacuum(char **pzErrMsg, sqlite *db)
int sqliteRunVacuum(char **pzErrMsg, sqlite *db){
#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
  const char *zFilename;  /* full pathname of the database file */
  int nFilename;          /* number of characters  in zFilename[] */
  char *zTemp = 0;        /* a temporary file in same directory as zFilename */
  sqlite *dbNew = 0;      /* The new vacuumed database */
  int rc = SQLITE_OK;     /* Return code from service routines */
  int i;                  /* Loop counter */
  char *zErrMsg;          /* Error message */
  vacuumStruct sVac;      /* Information passed to callbacks */

  if( db->flags & SQLITE_InTrans ){
    sqliteSetString(pzErrMsg, "cannot VACUUM from within a transaction", 
       (char*)0);
    return SQLITE_ERROR;
  }
  if( db->flags & SQLITE_Interrupt ){
    return SQLITE_INTERRUPT;
  }
  memset(&sVac, 0, sizeof(sVac));

  /* Get the full pathname of the database file and create two
  ** temporary filenames in the same directory as the original file.
  */
  zFilename = sqliteBtreeGetFilename(db->aDb[0].pBt);
  if( zFilename==0 ){
    /* This only happens with the in-memory database.  VACUUM is a no-op
    ** there, so just return */
    return SQLITE_OK;
  }
  nFilename = strlen(zFilename);
  zTemp = sqliteMalloc( nFilename+100 );
  if( zTemp==0 ) return SQLITE_NOMEM;
  strcpy(zTemp, zFilename);
  for(i=0; i<10; i++){
    zTemp[nFilename] = '-';
    randomName((unsigned char*)&zTemp[nFilename+1]);
    if( !sqliteOsFileExists(zTemp) ) break;
  }
  if( i>=10 ){
    sqliteSetString(pzErrMsg, "unable to create a temporary database file "
       "in the same directory as the original database", (char*)0);
    goto end_of_vacuum;
  }

  
  dbNew = sqlite_open(zTemp, 0, &zErrMsg);
  if( dbNew==0 ){
    sqliteSetString(pzErrMsg, "unable to open a temporary database at ",
       zTemp, " - ", zErrMsg, (char*)0);
    goto end_of_vacuum;
  }
  if( (rc = execsql(pzErrMsg, db, "BEGIN"))!=0 ) goto end_of_vacuum;
  if( (rc = execsql(pzErrMsg, dbNew, "PRAGMA synchronous=off; BEGIN"))!=0 ){
    goto end_of_vacuum;
  }
  
  sVac.dbOld = db;
  sVac.dbNew = dbNew;
  sVac.pzErrMsg = pzErrMsg;
  if( rc==SQLITE_OK ){
    rc = sqlite_exec(db, 
      "SELECT type, name, sql FROM sqlite_master "
      "WHERE sql NOT NULL AND type!='view' "
      "UNION ALL "
      "SELECT type, name, sql FROM sqlite_master "
      "WHERE sql NOT NULL AND type=='view'",
      vacuumCallback1, &sVac, &zErrMsg);
  }
  if( rc==SQLITE_OK ){
    int meta1[SQLITE_N_BTREE_META];
    int meta2[SQLITE_N_BTREE_META];
    sqliteBtreeGetMeta(db->aDb[0].pBt, meta1);
    sqliteBtreeGetMeta(dbNew->aDb[0].pBt, meta2);
    meta2[1] = meta1[1]+1;
    meta2[3] = meta1[3];
    meta2[4] = meta1[4];
    meta2[6] = meta1[6];
    rc = sqliteBtreeUpdateMeta(dbNew->aDb[0].pBt, meta2);
  }
  if( rc==SQLITE_OK ){
    rc = sqliteBtreeCopyFile(db->aDb[0].pBt, dbNew->aDb[0].pBt);
    sqlite_exec(db, "COMMIT", 0, 0, 0);
    sqliteResetInternalSchema(db, 0);
  }

end_of_vacuum:
  if( rc && zErrMsg!=0 ){
    sqliteSetString(pzErrMsg, "unable to vacuum database - ", 
       zErrMsg, (char*)0);
  }
  sqlite_exec(db, "ROLLBACK", 0, 0, 0);
  if( (dbNew && (dbNew->flags & SQLITE_Interrupt)) 
         || (db->flags & SQLITE_Interrupt) ){
    rc = SQLITE_INTERRUPT;
  }
  if( dbNew ) sqlite_close(dbNew);
  sqliteOsDelete(zTemp);
  sqliteFree(zTemp);
  sqliteFree(sVac.s1.z);
  sqliteFree(sVac.s2.z);
  if( zErrMsg ) sqlite_freemem(zErrMsg);
  if( rc==SQLITE_ABORT && sVac.rc!=SQLITE_INTERRUPT ) sVac.rc = SQLITE_ERROR;
  return sVac.rc;
#endif
}
vacuum.c197
vdbe.c
TypeFunctionSourceLine
INTsqlite_step( sqlite_vm *pVm, int *pN, const char ***pazValue, const char ***pazColName )
int sqlite_step(
  sqlite_vm *pVm,              /* The virtual machine to execute */
  int *pN,                     /* OUT: Number of columns in result */
  const char ***pazValue,      /* OUT: Column data */
  const char ***pazColName     /* OUT: Column names and datatypes */
){
  Vdbe *p = (Vdbe*)pVm;
  sqlite *db;
  int rc;

  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_MISUSE;
  }
  db = p->db;
  if( sqliteSafetyOn(db) ){
    p->rc = SQLITE_MISUSE;
    return SQLITE_MISUSE;
  }
  if( p->explain ){
    rc = sqliteVdbeList(p);
  }else{
    rc = sqliteVdbeExec(p);
  }
  if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
    if( pazColName ) *pazColName = (const char**)p->azColName;
    if( pN ) *pN = p->nResColumn;
  }else{
    if( pazColName) *pazColName = 0;
    if( pN ) *pN = 0;
  }
  if( pazValue ){
    if( rc==SQLITE_ROW ){
      *pazValue = (const char**)p->azResColumn;
    }else{
      *pazValue = 0;
    }
  }
  if( sqliteSafetyOff(db) ){
    return SQLITE_MISUSE;
  }
  return rc;
}
vdbe.c72
STATIC INTAggInsert(Agg *p, char *zKey, int nKey)
static int AggInsert(Agg *p, char *zKey, int nKey){
  AggElem *pElem, *pOld;
  int i;
  Mem *pMem;
  pElem = sqliteMalloc( sizeof(AggElem) + nKey +
                        (p->nMem-1)*sizeof(pElem->aMem[0]) );
  if( pElem==0 ) return 1;
  pElem->zKey = (char*)&pElem->aMem[p->nMem];
  memcpy(pElem->zKey, zKey, nKey);
  pElem->nKey = nKey;
  pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
  if( pOld!=0 ){
    assert( pOld==pElem );  /* Malloc failed on insert */
    sqliteFree(pOld);
    return 0;
  }
  for(i=0, pMem=pElem->aMem; inMem; i++, pMem++){
    pMem->flags = MEM_Null;
  }
  p->pCurrent = pElem;
  return 0;
}

vdbe.c150
STATIC AGGELEM _AggInFocus(Agg *p)
static AggElem *_AggInFocus(Agg *p){
  HashElem *pElem = sqliteHashFirst(&p->hash);
  if( pElem==0 ){
    AggInsert(p,"",1);
    pElem = sqliteHashFirst(&p->hash);
  }
  return pElem ? sqliteHashData(pElem) : 0;
}

vdbe.c183
STATIC INThardStringify(Mem *pStack)
static int hardStringify(Mem *pStack){
  int fg = pStack->flags;
  if( fg & MEM_Real ){
    sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
  }else if( fg & MEM_Int ){
    sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
  }else{
    pStack->zShort[0] = 0;
  }
  pStack->z = pStack->zShort;
  pStack->n = strlen(pStack->zShort)+1;
  pStack->flags = MEM_Str | MEM_Short;
  return 0;
}

vdbe.c197
STATIC INThardDynamicify(Mem *pStack)
static int hardDynamicify(Mem *pStack){
  int fg = pStack->flags;
  char *z;
  if( (fg & MEM_Str)==0 ){
    hardStringify(pStack);
  }
  assert( (fg & MEM_Dyn)==0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string.  Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
vdbe.c220
} STATIC INThardDeephem(Mem *pStack)
static int hardDeephem(Mem *pStack){
  char *z;
  assert( (pStack->flags & MEM_Ephem)!=0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags &= ~MEM_Ephem;
  pStack->flags |= MEM_Dyn;
  return 0;
}

vdbe.c248
STATIC VOIDpopStack(Mem **ppTos, int N)
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;
    Release(pTos);
    pTos--;
  }
  *ppTos = pTos;
}
vdbe.c266
STATIC INTtoInt(const char *zNum, int *pNum)
static int toInt(const char *zNum, int *pNum){
  int v = 0;
  int neg;
  int i, c;
  if( *zNum=='-' ){
    neg = 1;
    zNum++;
  }else if( *zNum=='+' ){
    neg = 0;
    zNum++;
  }else{
    neg = 0;
  }
  for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
    v = v*10 + c - '0';
  }
  *pNum = neg ? -v : v;
  return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
}

vdbe.c279
STATIC VOIDhardIntegerify(Mem *pStack)
static void hardIntegerify(Mem *pStack){
  if( pStack->flags & MEM_Real ){
    pStack->i = (int)pStack->r;
    Release(pStack);
  }else if( pStack->flags & MEM_Str ){
    toInt(pStack->z, &pStack->i);
    Release(pStack);
  }else{
    pStack->i = 0;
  }
  pStack->flags = MEM_Int;
}

vdbe.c316
STATIC VOIDhardRealify(Mem *pStack)
static void hardRealify(Mem *pStack){
  if( pStack->flags & MEM_Str ){
    pStack->r = sqliteAtoF(pStack->z, 0);
  }else if( pStack->flags & MEM_Int ){
    pStack->r = pStack->i;
  }else{
    pStack->r = 0.0;
  }
  pStack->flags |= MEM_Real;
}
vdbe.c336
STATIC SORTER Merge(Sorter *pLeft, Sorter *pRight)
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
  Sorter sHead;
  Sorter *pTail;
  pTail = &sHead;
  pTail->pNext = 0;
  while( pLeft && pRight ){
    int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
    if( c<=0 ){
      pTail->pNext = pLeft;
      pLeft = pLeft->pNext;
    }else{
      pTail->pNext = pRight;
      pRight = pRight->pNext;
    }
    pTail = pTail->pNext;
  }
  if( pLeft ){
    pTail->pNext = pLeft;
  }else if( pRight ){
    pTail->pNext = pRight;
  }
  return sHead.pNext;
}
vdbe.c347
STATIC CHAR vdbe_fgets(char *zBuf, int nBuf, FILE *in)
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
  int i, c;
  for(i=0; i0 ? zBuf : 0;
}
vdbe.c379
STATIC INTexpandCursorArraySize(Vdbe *p, int mxCursor)
static int expandCursorArraySize(Vdbe *p, int mxCursor){
  if( mxCursor>=p->nCursor ){
    Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
    if( aCsr==0 ) return 1;
    p->aCsr = aCsr;
    memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
    p->nCursor = mxCursor+1;
  }
  return 0;
}
vdbe.c405
__INLINE__ UNSIGNED LONG LONG INThwtime(void)
__inline__ unsigned long long int hwtime(void){
  unsigned long long int x;
  __asm__("rdtsc\n\t"
          "mov %%edx, %%ecx\n\t"
          :"=A" (x));
  return x;
}
#endif

/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite_interrupt() routine has been called.  If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop.  This test used to be on every single instruction,
** but that meant we more testing that we needed.  By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
   if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
vdbe.c425
INTsqliteVdbeExec( Vdbe *p )
int sqliteVdbeExec(
  Vdbe *p                    /* The VDBE */
){
  int pc;                    /* The program counter */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite *db = p->db;        /* The database */
  Mem *pTos;                 /* Top entry in the operand stack */
  char zBuf[100];            /* Space to sprintf() an integer */
#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif

  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
  assert( db->magic==SQLITE_MAGIC_BUSY );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  if( sqlite_malloc_failed ) goto no_mem;
  pTos = p->pTos;
  if( p->popStack ){
    popStack(&pTos, p->popStack);
    p->popStack = 0;
  }
  CHECK_FOR_INTERRUPT;
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pcnOp );
    assert( pTos<=&p->aStack[pc] );
#ifdef VDBE_PROFILE
    origPc = pc;
    start = hwtime();
#endif
    pOp = &p->aOp[pc];

    /* Only allow tracing if NDEBUG is not defined.
    */
#ifndef NDEBUG
    if( p->trace ){
      sqliteVdbePrintOp(p->trace, pc, pOp);
    }
#endif

    /* Check to see if we need to simulate an interrupt.  This only happens
    ** if we have a special test build.
    */
#ifdef SQLITE_TEST
    if( sqlite_interrupt_count>0 ){
      sqlite_interrupt_count--;
      if( sqlite_interrupt_count==0 ){
        sqlite_interrupt(db);
      }
    }
#endif

#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
    /* Call the progress callback if it is configured and the required number
    ** of VDBE ops have been executed (either since this invocation of
    ** sqliteVdbeExec() or since last time the progress callback was called).
    ** If the progress callback returns non-zero, exit the virtual machine with
    ** a return code SQLITE_ABORT.
    */
    if( db->xProgress ){
      if( db->nProgressOps==nProgressOps ){
        if( db->xProgress(db->pProgressArg)!=0 ){
          rc = SQLITE_ABORT;
          continue; /* skip to the next iteration of the for loop */
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif

    switch( pOp->opcode ){

/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine.  If we follow the usual
** indentation conventions, each case should be indented by 6 spaces.  But
** that is a lot of wasted space on the left margin.  So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important.  The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_".  The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
**     Formatting is important to scripts that scan this file.
**     Do not deviate from the formatting style currently in use.
**
*****************************************************************************/

/* Opcode:  Goto * P2 *
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {
  CHECK_FOR_INTERRUPT;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Gosub * P2 *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth.  If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub: {
  if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
    sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
    p->rc = SQLITE_INTERNAL;
    return SQLITE_ERROR;
  }
  p->returnStack[p->returnDepth++] = pc+1;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Return * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return: {
  if( p->returnDepth<=0 ){
    sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
    p->rc = SQLITE_INTERNAL;
    return SQLITE_ERROR;
  }
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}

/* Opcode:  Halt P1 P2 *
**
** Exit immediately.  All open cursors, Lists, Sorts, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite_exec().  For a normal
** halt, this should be SQLITE_OK (0).  For errors, it can be some
** other value.  If P1!=0 then P2 will determine whether or not to
** rollback the current transaction.  Do not rollback if P2==OE_Fail.
** Do the rollback if P2==OE_Rollback.  If P2==OE_Abort, then back
** out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
  p->magic = VDBE_MAGIC_HALT;
  p->pTos = pTos;
  if( pOp->p1!=SQLITE_OK ){
    p->rc = pOp->p1;
    p->errorAction = pOp->p2;
    if( pOp->p3 ){
      sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
    }
    return SQLITE_ERROR;
  }else{
    p->rc = SQLITE_OK;
    return SQLITE_DONE;
  }
}

/* Opcode: Integer P1 * P3
**
** The integer value P1 is pushed onto the stack.  If P3 is not zero
** then it is assumed to be a string representation of the same integer.
*/
case OP_Integer: {
  pTos++;
  pTos->i = pOp->p1;
  pTos->flags = MEM_Int;
  if( pOp->p3 ){
    pTos->z = pOp->p3;
    pTos->flags |= MEM_Str | MEM_Static;
    pTos->n = strlen(pOp->p3)+1;
  }
  break;
}

/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack.  If P3==0 then a
** NULL is pushed onto the stack.
*/
case OP_String: {
  char *z = pOp->p3;
  pTos++;
  if( z==0 ){
    pTos->flags = MEM_Null;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Static;
  }
  break;
}

/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable.  Variables in the SQL string are number from left to
** right beginning with 1.  The values of variables are set using the
** sqlite_bind() API.
*/
case OP_Variable: {
  int j = pOp->p1 - 1;
  pTos++;
  if( j>=0 && jnVar && p->azVar[j]!=0 ){
    pTos->z = p->azVar[j];
    pTos->n = p->anVar[j];
    pTos->flags = MEM_Str | MEM_Static;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
  assert( pOp->p1>=0 );
  popStack(&pTos, pOp->p1);
  assert( pTos>=&p->aStack[-1] );
  break;
}

/* Opcode: Dup P1 P2 *
**
** A copy of the P1-th element of the stack 
** is made and pushed onto the top of the stack.
** The top of the stack is element 0.  So the
** instruction "Dup 0 0 0" will make a copy of the
** top of the stack.
**
** If the content of the P1-th element is a dynamically
** allocated string, then a new copy of that string
** is made if P2==0.  If P2!=0, then just a pointer
** to the string is copied.
**
** Also see the Pull instruction.
*/
case OP_Dup: {
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
  if( pTos->flags & MEM_Str ){
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
      pTos->flags &= ~MEM_Dyn;
      pTos->flags |= MEM_Ephem;
    }else if( pTos->flags & MEM_Short ){
      memcpy(pTos->zShort, pFrom->zShort, pTos->n);
      pTos->z = pTos->zShort;
    }else if( (pTos->flags & MEM_Static)==0 ){
      pTos->z = sqliteMallocRaw(pFrom->n);
      if( sqlite_malloc_failed ) goto no_mem;
      memcpy(pTos->z, pFrom->z, pFrom->n);
      pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
      pTos->flags |= MEM_Dyn;
    }
  }
  break;
}

/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {
  Mem *pFrom = &pTos[-pOp->p1];
  int i;
  Mem ts;

  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; ip1; i++, pFrom++){
    Deephemeralize(&pFrom[1]);
    *pFrom = pFrom[1];
    assert( (pFrom->flags & MEM_Ephem)==0 );
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & MEM_Str );
      assert( pFrom->z==pFrom[1].zShort );
      pFrom->z = pFrom->zShort;
    }
  }
  *pTos = ts;
  if( pTos->flags & MEM_Short ){
    assert( pTos->flags & MEM_Str );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    pTos->z = pTos->zShort;
  }
  break;
}

/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {
  Mem *pTo = &pTos[-pOp->p1];

  assert( pTo>=p->aStack );
  Deephemeralize(pTos);
  Release(pTo);
  *pTo = *pTos;
  if( pTo->flags & MEM_Short ){
    assert( pTo->z==pTos->zShort );
    pTo->z = pTo->zShort;
  }
  pTos--;
  break;
}


/* Opcode: ColumnName P1 P2 P3
**
** P3 becomes the P1-th column name (first is 0).  An array of pointers
** to all column names is passed as the 4th parameter to the callback.
** If P2==1 then this is the last column in the result set and thus the
** number of columns in the result set will be P1.  There must be at least
** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
** number of columns specified in OP_Callback must one more than the P1
** value of the OP_ColumnName that has P2==1.
*/
case OP_ColumnName: {
  assert( pOp->p1>=0 && pOp->p1nOp );
  p->azColName[pOp->p1] = pOp->p3;
  p->nCallback = 0;
  if( pOp->p2 ) p->nResColumn = pOp->p1+1;
  break;
}

/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array.  Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
*/
case OP_Callback: {
  int i;
  char **azArgv = p->zArgv;
  Mem *pCol;

  pCol = &pTos[1-pOp->p1];
  assert( pCol>=p->aStack );
  for(i=0; ip1; i++, pCol++){
    if( pCol->flags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(pCol);
      azArgv[i] = pCol->z;
    }
  }
  azArgv[i] = 0;
  p->nCallback++;
  p->azResColumn = azArgv;
  assert( p->nResColumn==pOp->p1 );
  p->popStack = pOp->p1;
  p->pc = pc + 1;
  p->pTos = pTos;
  return SQLITE_ROW;
}

/* Opcode: Concat P1 P2 P3
**
** Look at the first P1 elements of the stack.  Append them all 
** together with the lowest element first.  Use P3 as a separator.  
** Put the result on the top of the stack.  The original P1 elements
** are popped from the stack if P2==0 and retained if P2==1.  If
** any element of the stack is NULL, then the result is NULL.
**
** If P3 is NULL, then use no separator.  When P1==1, this routine
** makes a copy of the top stack element into memory obtained
** from sqliteMalloc().
*/
case OP_Concat: {
  char *zNew;
  int nByte;
  int nField;
  int i, j;
  char *zSep;
  int nSep;
  Mem *pTerm;

  nField = pOp->p1;
  zSep = pOp->p3;
  if( zSep==0 ) zSep = "";
  nSep = strlen(zSep);
  assert( &pTos[1-nField] >= p->aStack );
  nByte = 1 - nSep;
  pTerm = &pTos[1-nField];
  for(i=0; iflags & MEM_Null ){
      nByte = -1;
      break;
    }else{
      Stringify(pTerm);
      nByte += pTerm->n - 1 + nSep;
    }
  }
  if( nByte<0 ){
    if( pOp->p2==0 ){
      popStack(&pTos, nField);
    }
    pTos++;
    pTos->flags = MEM_Null;
    break;
  }
  zNew = sqliteMallocRaw( nByte );
  if( zNew==0 ) goto no_mem;
  j = 0;
  pTerm = &pTos[1-nField];
  for(i=j=0; iflags & MEM_Str );
    memcpy(&zNew[j], pTerm->z, pTerm->n-1);
    j += pTerm->n-1;
    if( nSep>0 && ip2==0 ){
    popStack(&pTos, nField);
  }
  pTos++;
  pTos->n = nByte;
  pTos->flags = MEM_Str|MEM_Dyn;
  pTos->z = zNew;
  break;
}

/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the addition.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Multiply * * *
**
** Pop the top two elements from the stack, multiply them together,
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the multiplication.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Subtract * * *
**
** Pop the top two elements from the stack, subtract the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the subtraction.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Divide * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the division.  Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Remainder * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the division.  Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:
case OP_Subtract:
case OP_Multiply:
case OP_Divide:
case OP_Remainder: {
  Mem *pNos = &pTos[-1];
  assert( pNos>=p->aStack );
  if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->flags = MEM_Null;
  }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
    int a, b;
    a = pTos->i;
    b = pNos->i;
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0 ) goto divide_by_zero;
        b /= a;
        break;
      }
      default: {
        if( a==0 ) goto divide_by_zero;
        b %= a;
        break;
      }
    }
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->i = b;
    pTos->flags = MEM_Int;
  }else{
    double a, b;
    Realify(pTos);
    Realify(pNos);
    a = pTos->r;
    b = pNos->r;
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0.0 ) goto divide_by_zero;
        b /= a;
        break;
      }
      default: {
        int ia = (int)a;
        int ib = (int)b;
        if( ia==0.0 ) goto divide_by_zero;
        b = ib % ia;
        break;
      }
    }
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->r = b;
    pTos->flags = MEM_Real;
  }
  break;

divide_by_zero:
  Release(pTos);
  pTos--;
  Release(pTos);
  pTos->flags = MEM_Null;
  break;
}

/* Opcode: Function P1 * P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P1 string arguments taken from the stack.
** Pop all arguments from the stack and push back the result.
**
** See also: AggFunc
*/
case OP_Function: {
  int n, i;
  Mem *pArg;
  char **azArgv;
  sqlite_func ctx;

  n = pOp->p1;
  pArg = &pTos[1-n];
  azArgv = p->zArgv;
  for(i=0; iflags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(pArg);
      azArgv[i] = pArg->z;
    }
  }
  ctx.pFunc = (FuncDef*)pOp->p3;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.isError = 0;
  ctx.isStep = 0;
  if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
  (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
  if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
  popStack(&pTos, n);
  pTos++;
  *pTos = ctx.s;
  if( pTos->flags & MEM_Short ){
    pTos->z = pTos->zShort;
  }
  if( ctx.isError ){
    sqliteSetString(&p->zErrMsg, 
       (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the bit-wise AND of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: BitOr * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the bit-wise OR of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the top element shifted
** left by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the top element shifted
** right by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:
case OP_BitOr:
case OP_ShiftLeft:
case OP_ShiftRight: {
  Mem *pNos = &pTos[-1];
  int a, b;

  assert( pNos>=p->aStack );
  if( (pTos->flags | pNos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    pTos++;
    pTos->flags = MEM_Null;
    break;
  }
  Integerify(pTos);
  Integerify(pNos);
  a = pTos->i;
  b = pNos->i;
  switch( pOp->opcode ){
    case OP_BitAnd:      a &= b;     break;
    case OP_BitOr:       a |= b;     break;
    case OP_ShiftLeft:   a <<= b;    break;
    case OP_ShiftRight:  a >>= b;    break;
    default:   /* CANT HAPPEN */     break;
  }
  assert( (pTos->flags & MEM_Dyn)==0 );
  assert( (pNos->flags & MEM_Dyn)==0 );
  pTos--;
  Release(pTos);
  pTos->i = a;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: AddImm  P1 * *
** 
** Add the value P1 to whatever is on top of the stack.  The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {
  assert( pTos>=p->aStack );
  Integerify(pTos);
  pTos->i += pOp->p1;
  break;
}

/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer.  If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2.  If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {
  int v;
  assert( pTos>=p->aStack );
  if( (pTos->flags & (MEM_Int|MEM_Real))==0
         && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;
    break;
  }
  if( pTos->flags & MEM_Int ){
    v = pTos->i + (pOp->p1!=0);
  }else{
    Realify(pTos);
    v = (int)pTos->r;
    if( pTos->r>(double)v ) v++;
    if( pOp->p1 && pTos->r==(double)v ) v++;
  }
  Release(pTos);
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: MustBeInt P1 P2 *
** 
** Force the top of the stack to be an integer.  If the top of the
** stack is not an integer and cannot be converted into an integer
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Int ){
    /* Do nothing */
  }else if( pTos->flags & MEM_Real ){
    int i = (int)pTos->r;
    double r = (double)i;
    if( r!=pTos->r ){
      goto mismatch;
    }
    pTos->i = i;
  }else if( pTos->flags & MEM_Str ){
    int v;
    if( !toInt(pTos->z, &v) ){
      double r;
      if( !sqliteIsNumber(pTos->z) ){
        goto mismatch;
      }
      Realify(pTos);
      v = (int)pTos->r;
      r = (double)v;
      if( r!=pTos->r ){
        goto mismatch;
      }
    }
    pTos->i = v;
  }else{
    goto mismatch;
  }
  Release(pTos);
  pTos->flags = MEM_Int;
  break;

mismatch:
  if( pOp->p2==0 ){
    rc = SQLITE_MISMATCH;
    goto abort_due_to_error;
  }else{
    if( pOp->p1 ) popStack(&pTos, 1);
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Eq P1 P2 *
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared for equality that way.  Otherwise the strcmp() library
** routine is used for the comparison.  For a pure text comparison
** use OP_StrEq.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: Ne P1 P2 *
**
** Pop the top two elements from the stack.  If they are not equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format.  Otherwise the strcmp() library
** routine is used for the comparison.  For a pure text comparison
** use OP_StrNe.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: Lt P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2.  Otherwise, continue to the next instruction.
** In other words, jump if NOSTOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format.  Numeric values are always less than
** non-numeric values.  If both operands are non-numeric, the strcmp() library
** routine is used for the comparison.  For a pure text comparison
** use OP_StrGt.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: Ge P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format.  Numeric values are always less than
** non-numeric values.  If both operands are non-numeric, the strcmp() library
** routine is used for the comparison.  For a pure text comparison
** use OP_StrGe.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
case OP_Eq:
case OP_Ne:
case OP_Lt:
case OP_Le:
case OP_Gt:
case OP_Ge: {
  Mem *pNos = &pTos[-1];
  int c, v;
  int ft, fn;
  assert( pNos>=p->aStack );
  ft = pTos->flags;
  fn = pNos->flags;
  if( (ft | fn) & MEM_Null ){
    popStack(&pTos, 2);
    if( pOp->p2 ){
      if( pOp->p1 ) pc = pOp->p2-1;
    }else{
      pTos++;
      pTos->flags = MEM_Null;
    }
    break;
  }else if( (ft & fn & MEM_Int)==MEM_Int ){
    c = pNos->i - pTos->i;
  }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
    c = v - pTos->i;
  }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
    c = pNos->i - v;
  }else{
    Stringify(pTos);
    Stringify(pNos);
    c = sqliteCompare(pNos->z, pTos->z);
  }
  switch( pOp->opcode ){
    case OP_Eq:    c = c==0;     break;
    case OP_Ne:    c = c!=0;     break;
    case OP_Lt:    c = c<0;      break;
    case OP_Le:    c = c<=0;     break;
    case OP_Gt:    c = c>0;      break;
    default:       c = c>=0;     break;
  }
  popStack(&pTos, 2);
  if( pOp->p2 ){
    if( c ) pc = pOp->p2-1;
  }else{
    pTos++;
    pTos->i = c;
    pTos->flags = MEM_Int;
  }
  break;
}
/* INSERT NO CODE HERE!
**
** The opcode numbers are extracted from this source file by doing
**
**    grep '^case OP_' vdbe.c | ... >opcodes.h
**
** The opcodes are numbered in the order that they appear in this file.
** But in order for the expression generating code to work right, the
** string comparison operators that follow must be numbered exactly 6
** greater than the numeric comparison opcodes above.  So no other
** cases can appear between the two.
*/
/* Opcode: StrEq P1 P2 *
**
** Pop the top two elements from the stack.  If they are equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Eq.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrNe P1 P2 *
**
** Pop the top two elements from the stack.  If they are not equal, then
** jump to instruction P2.  Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Ne.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLt P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2.  Otherwise, continue to the next instruction.
** In other words, jump if NOSTOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Gt.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGe P1 P2 *
**
** Pop the top two elements from the stack.  If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison.  For a
** numeric comparison, use OP_Ge.
**
** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not.  Push a
** NULL if either operand was NULL.
*/
case OP_StrEq:
case OP_StrNe:
case OP_StrLt:
case OP_StrLe:
case OP_StrGt:
case OP_StrGe: {
  Mem *pNos = &pTos[-1];
  int c;
  assert( pNos>=p->aStack );
  if( (pNos->flags | pTos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    if( pOp->p2 ){
      if( pOp->p1 ) pc = pOp->p2-1;
    }else{
      pTos++;
      pTos->flags = MEM_Null;
    }
    break;
  }else{
    Stringify(pTos);
    Stringify(pNos);
    c = strcmp(pNos->z, pTos->z);
  }
  /* The asserts on each case of the following switch are there to verify
  ** that string comparison opcodes are always exactly 6 greater than the
  ** corresponding numeric comparison opcodes.  The code generator depends
  ** on this fact.
  */
  switch( pOp->opcode ){
    case OP_StrEq:    c = c==0;    assert( pOp->opcode-6==OP_Eq );   break;
    case OP_StrNe:    c = c!=0;    assert( pOp->opcode-6==OP_Ne );   break;
    case OP_StrLt:    c = c<0;     assert( pOp->opcode-6==OP_Lt );   break;
    case OP_StrLe:    c = c<=0;    assert( pOp->opcode-6==OP_Le );   break;
    case OP_StrGt:    c = c>0;     assert( pOp->opcode-6==OP_Gt );   break;
    default:          c = c>=0;    assert( pOp->opcode-6==OP_Ge );   break;
  }
  popStack(&pTos, 2);
  if( pOp->p2 ){
    if( c ) pc = pOp->p2-1;
  }else{
    pTos++;
    pTos->flags = MEM_Int;
    pTos->i = c;
  }
  break;
}

/* Opcode: And * * *
**
** Pop two values off the stack.  Take the logical AND of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
/* Opcode: Or * * *
**
** Pop two values off the stack.  Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
case OP_And:
case OP_Or: {
  Mem *pNos = &pTos[-1];
  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */

  assert( pNos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    v1 = 2;
  }else{
    Integerify(pTos);
    v1 = pTos->i==0;
  }
  if( pNos->flags & MEM_Null ){
    v2 = 2;
  }else{
    Integerify(pNos);
    v2 = pNos->i==0;
  }
  if( pOp->opcode==OP_And ){
    static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
    v1 = and_logic[v1*3+v2];
  }else{
    static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
    v1 = or_logic[v1*3+v2];
  }
  popStack(&pTos, 2);
  pTos++;
  if( v1==2 ){
    pTos->flags = MEM_Null;
  }else{
    pTos->i = v1==0;
    pTos->flags = MEM_Int;
  }
  break;
}

/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its additive inverse.  If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:
case OP_AbsValue: {
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Real ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }
    pTos->flags = MEM_Real;
  }else if( pTos->flags & MEM_Int ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->i<0 ){
      pTos->i = -pTos->i;
    }
    pTos->flags = MEM_Int;
  }else if( pTos->flags & MEM_Null ){
    /* Do nothing */
  }else{
    Realify(pTos);
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }
    pTos->flags = MEM_Real;
  }
  break;
}

/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value.  Replace it
** with its complement.  If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  Release(pTos);
  pTos->i = !pTos->i;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value.  Replace it
** with its ones-complement.  If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  Release(pTos);
  pTos->i = ~pTos->i;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: Noop * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
case OP_Noop: {
  break;
}

/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack.  If the boolean popped is
** true, then jump to p2.  Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise.  A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
/* Opcode: IfNot P1 P2 *
**
** Pop a single boolean from the stack.  If the boolean popped is
** false, then jump to p2.  Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise.  A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:
case OP_IfNot: {
  int c;
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    c = pOp->p1;
  }else{
    Integerify(pTos);
    c = pTos->i;
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}

/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2.  Pop the stack P1 times if P1>0.   If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: {
  int i, cnt;
  Mem *pTerm;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  pTerm = &pTos[1-cnt];
  assert( pTerm>=p->aStack );
  for(i=0; iflags & MEM_Null ){
      pc = pOp->p2-1;
      break;
    }
  }
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL.  Pop the
** stack if P1 times if P1 is greater than zero.  If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: MakeRecord P1 P2 *
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table.  The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later.  Refer to source code
** comments for the details of the record format.
**
** If P2 is true (non-zero) and one or more of the P1 entries
** that go into building the record is NULL, then add some extra
** bytes to the record to make it distinct for other entries created
** during the same run of the VDBE.  The extra bytes added are a
** counter that is reset with each run of the VDBE, so records
** created this way will not necessarily be distinct across runs.
** But they should be distinct for transient tables (created using
** OP_OpenTemp) which is what they are intended for.
**
** (Later:) The P2==1 option was intended to make NULLs distinct
** for the UNION operator.  But I have since discovered that NULLs
** are indistinct for UNION.  So this option is never used.
*/
case OP_MakeRecord: {
  char *zNewRecord;
  int nByte;
  int nField;
  int i, j;
  int idxWidth;
  u32 addr;
  Mem *pRec;
  int addUnique = 0;   /* True to cause bytes to be added to make the
                       ** generated record distinct */
  char zTemp[NBFS];    /* Temp space for small records */

  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  **   -------------------------------------------------------------------
  **   | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
  **   -------------------------------------------------------------------
  **
  ** All data fields are converted to strings before being stored and
  ** are stored with their null terminators.  NULL entries omit the
  ** null terminator.  Thus an empty string uses 1 byte and a NULL uses
  ** zero bytes.  Data(0) is taken from the lowest element of the stack
  ** and data(N-1) is the top of the stack.
  **
  ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
  ** how big the total record is.  Idx(0) contains the offset to the start
  ** of data(0).  Idx(k) contains the offset to the start of data(k).
  ** Idx(N) contains the total number of bytes in the record.
  */
  nField = pOp->p1;
  pRec = &pTos[1-nField];
  assert( pRec>=p->aStack );
  nByte = 0;
  for(i=0; iflags & MEM_Null ){
      addUnique = pOp->p2;
    }else{
      Stringify(pRec);
      nByte += pRec->n;
    }
  }
  if( addUnique ) nByte += sizeof(p->uniqueCnt);
  if( nByte + nField + 1 < 256 ){
    idxWidth = 1;
  }else if( nByte + 2*nField + 2 < 65536 ){
    idxWidth = 2;
  }else{
    idxWidth = 3;
  }
  nByte += idxWidth*(nField + 1);
  if( nByte>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }
  if( nByte<=NBFS ){
    zNewRecord = zTemp;
  }else{
    zNewRecord = sqliteMallocRaw( nByte );
    if( zNewRecord==0 ) goto no_mem;
  }
  j = 0;
  addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
  for(i=0, pRec=&pTos[1-nField]; i1 ){
      zNewRecord[j++] = (addr>>8)&0xff;
      if( idxWidth>2 ){
        zNewRecord[j++] = (addr>>16)&0xff;
      }
    }
    if( (pRec->flags & MEM_Null)==0 ){
      addr += pRec->n;
    }
  }
  zNewRecord[j++] = addr & 0xff;
  if( idxWidth>1 ){
    zNewRecord[j++] = (addr>>8)&0xff;
    if( idxWidth>2 ){
      zNewRecord[j++] = (addr>>16)&0xff;
    }
  }
  if( addUnique ){
    memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
    p->uniqueCnt++;
    j += sizeof(p->uniqueCnt);
  }
  for(i=0, pRec=&pTos[1-nField]; iflags & MEM_Null)==0 ){
      memcpy(&zNewRecord[j], pRec->z, pRec->n);
      j += pRec->n;
    }
  }
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nByte;
  if( nByte<=NBFS ){
    assert( zNewRecord==zTemp );
    memcpy(pTos->zShort, zTemp, nByte);
    pTos->z = pTos->zShort;
    pTos->flags = MEM_Str | MEM_Short;
  }else{
    assert( zNewRecord!=zTemp );
    pTos->z = zNewRecord;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  break;
}

/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index.  The top P1 records are
** converted to strings and merged.  The null-terminators 
** are retained and used as separators.
** The lowest entry in the stack is the first field and the top of the
** stack becomes the last.
**
** If P2 is not zero, then the original entries remain on the stack
** and the new key is pushed on top.  If P2 is zero, the original
** data is popped off the stack first then the new key is pushed
** back in its place.
**
** P3 is a string that is P1 characters long.  Each character is either
** an 'n' or a 't' to indicates if the argument should be intepreted as
** numeric or text type.  The first character of P3 corresponds to the
** lowest element on the stack.  If P3 is NULL then all arguments are
** assumed to be of the numeric type.
**
** The type makes a difference in that text-type fields may not be 
** introduced by 'b' (as described in the next paragraph).  The
** first character of a text-type field must be either 'a' (if it is NULL)
** or 'c'.  Numeric fields will be introduced by 'b' if their content
** looks like a well-formed number.  Otherwise the 'a' or 'c' will be
** used.
**
** The key is a concatenation of fields.  Each field is terminated by
** a single 0x00 character.  A NULL field is introduced by an 'a' and
** is followed immediately by its 0x00 terminator.  A numeric field is
** introduced by a single character 'b' and is followed by a sequence
** of characters that represent the number such that a comparison of
** the character string using memcpy() sorts the numbers in numerical
** order.  The character strings for numbers are generated using the
** sqliteRealToSortable() function.  A text field is introduced by a
** 'c' character and is followed by the exact text of the field.  The
** use of an 'a', 'b', or 'c' character at the beginning of each field
** guarantees that NULLs sort before numbers and that numbers sort
** before text.  0x00 characters do not occur except as separators
** between fields.
**
** See also: MakeIdxKey, SortMakeKey
*/
/* Opcode: MakeIdxKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index.  In addition, take one additional integer
** off of the stack, treat that integer as a four-byte record number, and
** append the four bytes to the key.  Thus a total of P1+1 entries are
** popped from the stack for this instruction and a single entry is pushed
** back.  The first P1 entries that are popped are strings and the last
** entry (the lowest on the stack) is an integer record number.
**
** The converstion of the first P1 string entries occurs just like in
** MakeKey.  Each entry is separated from the others by a null.
** The entire concatenation is null-terminated.  The lowest entry
** in the stack is the first field and the top of the stack becomes the
** last.
**
** If P2 is not zero and one or more of the P1 entries that go into the
** generated key is NULL, then jump to P2 after the new key has been
** pushed on the stack.  In other words, jump to P2 if the key is
** guaranteed to be unique.  This jump can be used to skip a subsequent
** uniqueness test.
**
** P3 is a string that is P1 characters long.  Each character is either
** an 'n' or a 't' to indicates if the argument should be numeric or
** text.  The first character corresponds to the lowest element on the
** stack.  If P3 is null then all arguments are assumed to be numeric.
**
** See also:  MakeKey, SortMakeKey
*/
case OP_MakeIdxKey:
case OP_MakeKey: {
  char *zNewKey;
  int nByte;
  int nField;
  int addRowid;
  int i, j;
  int containsNull = 0;
  Mem *pRec;
  char zTemp[NBFS];

  addRowid = pOp->opcode==OP_MakeIdxKey;
  nField = pOp->p1;
  pRec = &pTos[1-nField];
  assert( pRec>=p->aStack );
  nByte = 0;
  for(j=0, i=0; iflags;
    int len;
    char *z;
    if( flags & MEM_Null ){
      nByte += 2;
      containsNull = 1;
    }else if( pOp->p3 && pOp->p3[j]=='t' ){
      Stringify(pRec);
      pRec->flags &= ~(MEM_Int|MEM_Real);
      nByte += pRec->n+1;
    }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
      if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
        pRec->r = pRec->i;
      }else if( (flags & (MEM_Real|MEM_Int))==0 ){
        pRec->r = sqliteAtoF(pRec->z, 0);
      }
      Release(pRec);
      z = pRec->zShort;
      sqliteRealToSortable(pRec->r, z);
      len = strlen(z);
      pRec->z = 0;
      pRec->flags = MEM_Real;
      pRec->n = len+1;
      nByte += pRec->n+1;
    }else{
      nByte += pRec->n+1;
    }
  }
  if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
    rc = SQLITE_TOOBIG;
    goto abort_due_to_error;
  }
  if( addRowid ) nByte += sizeof(u32);
  if( nByte<=NBFS ){
    zNewKey = zTemp;
  }else{
    zNewKey = sqliteMallocRaw( nByte );
    if( zNewKey==0 ) goto no_mem;
  }
  j = 0;
  pRec = &pTos[1-nField];
  for(i=0; iflags & MEM_Null ){
      zNewKey[j++] = 'a';
      zNewKey[j++] = 0;
    }else if( pRec->flags==MEM_Real ){
      zNewKey[j++] = 'b';
      memcpy(&zNewKey[j], pRec->zShort, pRec->n);
      j += pRec->n;
    }else{
      assert( pRec->flags & MEM_Str );
      zNewKey[j++] = 'c';
      memcpy(&zNewKey[j], pRec->z, pRec->n);
      j += pRec->n;
    }
  }
  if( addRowid ){
    u32 iKey;
    pRec = &pTos[-nField];
    assert( pRec>=p->aStack );
    Integerify(pRec);
    iKey = intToKey(pRec->i);
    memcpy(&zNewKey[j], &iKey, sizeof(u32));
    popStack(&pTos, nField+1);
    if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
  }else{
    if( pOp->p2==0 ) popStack(&pTos, nField);
  }
  pTos++;
  pTos->n = nByte;
  if( nByte<=NBFS ){
    assert( zNewKey==zTemp );
    pTos->z = pTos->zShort;
    memcpy(pTos->zShort, zTemp, nByte);
    pTos->flags = MEM_Str | MEM_Short;
  }else{
    pTos->z = zNewKey;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  break;
}

/* Opcode: IncrKey * * *
**
** The top of the stack should contain an index key generated by
** The MakeKey opcode.  This routine increases the least significant
** byte of that key by one.  This is used so that the MoveTo opcode
** will move to the first entry greater than the key rather than to
** the key itself.
*/
case OP_IncrKey: {
  assert( pTos>=p->aStack );
  /* The IncrKey opcode is only applied to keys generated by
  ** MakeKey or MakeIdxKey and the results of those operands
  ** are always dynamic strings or zShort[] strings.  So we
  ** are always free to modify the string in place.
  */
  assert( pTos->flags & (MEM_Dyn|MEM_Short) );
  pTos->z[pTos->n-1]++;
  break;
}

/* Opcode: Checkpoint P1 * *
**
** Begin a checkpoint.  A checkpoint is the beginning of a operation that
** is part of a larger transaction but which might need to be rolled back
** itself without effecting the containing transaction.  A checkpoint will
** be automatically committed or rollback when the VDBE halts.
**
** The checkpoint is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Checkpoint: {
  int i = pOp->p1;
  if( i>=0 && inDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
    rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
    if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
  }
  break;
}

/* Opcode: Transaction P1 * *
**
** Begin a transaction.  The transaction ends when a Commit or Rollback
** opcode is encountered.  Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started.  Index 0 is the main database file and index 1 is the
** file used for temporary tables.
**
** A write lock is obtained on the database file when a transaction is
** started.  No other process can read or write the file while the
** transaction is underway.  Starting a transaction also creates a
** rollback journal.  A transaction must be started before any changes
** can be made to the database.
*/
case OP_Transaction: {
  int busy = 1;
  int i = pOp->p1;
  assert( i>=0 && inDb );
  if( db->aDb[i].inTrans ) break;
  while( db->aDb[i].pBt!=0 && busy ){
    rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
    switch( rc ){
      case SQLITE_BUSY: {
        if( db->xBusyCallback==0 ){
          p->pc = pc;
          p->undoTransOnError = 1;
          p->rc = SQLITE_BUSY;
          p->pTos = pTos;
          return SQLITE_BUSY;
        }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
          sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
          busy = 0;
        }
        break;
      }
      case SQLITE_READONLY: {
        rc = SQLITE_OK;
        /* Fall thru into the next case */
      }
      case SQLITE_OK: {
        p->inTempTrans = 0;
        busy = 0;
        break;
      }
      default: {
        goto abort_due_to_error;
      }
    }
  }
  db->aDb[i].inTrans = 1;
  p->undoTransOnError = 1;
  break;
}

/* Opcode: Commit * * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to actually take effect.  No additional modifications
** are allowed until another transaction is started.  The Commit instruction
** deletes the journal file and releases the write lock on the database.
** A read lock continues to be held if there are still cursors open.
*/
case OP_Commit: {
  int i;
  if( db->xCommitCallback!=0 ){
    if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
    if( db->xCommitCallback(db->pCommitArg)!=0 ){
      rc = SQLITE_CONSTRAINT;
    }
    if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
  }
  for(i=0; rc==SQLITE_OK && inDb; i++){
    if( db->aDb[i].inTrans ){
      rc = sqliteBtreeCommit(db->aDb[i].pBt);
      db->aDb[i].inTrans = 0;
    }
  }
  if( rc==SQLITE_OK ){
    sqliteCommitInternalChanges(db);
  }else{
    sqliteRollbackAll(db);
  }
  break;
}

/* Opcode: Rollback P1 * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to be undone. The database is restored to its state
** before the Transaction opcode was executed.  No additional modifications
** are allowed until another transaction is started.
**
** P1 is the index of the database file that is committed.  An index of 0
** is used for the main database and an index of 1 is used for the file used
** to hold temporary tables.
**
** This instruction automatically closes all cursors and releases both
** the read and write locks on the indicated database.
*/
case OP_Rollback: {
  sqliteRollbackAll(db);
  break;
}

/* Opcode: ReadCookie P1 P2 *
**
** Read cookie number P2 from database P1 and push it onto the stack.
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {
  int aMeta[SQLITE_N_BTREE_META];
  assert( pOp->p2p1>=0 && pOp->p1nDb );
  assert( db->aDb[pOp->p1].pBt!=0 );
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  pTos++;
  pTos->i = aMeta[1+pOp->p2];
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: SetCookie P1 P2 *
**
** Write the top of the stack into cookie number P2 of database P1.
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
  int aMeta[SQLITE_N_BTREE_META];
  assert( pOp->p2p1>=0 && pOp->p1nDb );
  assert( db->aDb[pOp->p1].pBt!=0 );
  assert( pTos>=p->aStack );
  Integerify(pTos)
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  if( rc==SQLITE_OK ){
    aMeta[1+pOp->p2] = pTos->i;
    rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: VerifyCookie P1 P2 *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2.  
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
  int aMeta[SQLITE_N_BTREE_META];
  assert( pOp->p1>=0 && pOp->p1nDb );
  rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
  if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
    sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
    rc = SQLITE_SCHEMA;
  }
  break;
}

/* Opcode: OpenRead P1 P2 P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file.  The database file is determined by an 
** integer from the top of the stack.  0 means the main database and
** 1 means the database used for temporary tables.  Give the new 
** cursor an identifier of P1.  The P1 values need not be contiguous
** but all P1 values should be small integers.  It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor.  If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted.  But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  If P2==0 then take the root page number from the stack.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted.  But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int busy = 0;
  int i = pOp->p1;
  int p2 = pOp->p2;
  int wrFlag;
  Btree *pX;
  int iDb;
  
  assert( pTos>=p->aStack );
  Integerify(pTos);
  iDb = pTos->i;
  pTos--;
  assert( iDb>=0 && iDbnDb );
  pX = db->aDb[iDb].pBt;
  assert( pX!=0 );
  wrFlag = pOp->opcode==OP_OpenWrite;
  if( p2<=0 ){
    assert( pTos>=p->aStack );
    Integerify(pTos);
    p2 = pTos->i;
    pTos--;
    if( p2<2 ){
      sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
      rc = SQLITE_INTERNAL;
      break;
    }
  }
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  sqliteVdbeCleanupCursor(&p->aCsr[i]);
  memset(&p->aCsr[i], 0, sizeof(Cursor));
  p->aCsr[i].nullRow = 1;
  if( pX==0 ) break;
  do{
    rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
    switch( rc ){
      case SQLITE_BUSY: {
        if( db->xBusyCallback==0 ){
          p->pc = pc;
          p->rc = SQLITE_BUSY;
          p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
          return SQLITE_BUSY;
        }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
          sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
          busy = 0;
        }
        break;
      }
      case SQLITE_OK: {
        busy = 0;
        break;
      }
      default: {
        goto abort_due_to_error;
      }
    }
  }while( busy );
  break;
}

/* Opcode: OpenTemp P1 P2 *
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if 
** the main database is read-only.  The transient table is deleted
** automatically when the cursor is closed.
**
** The cursor points to a BTree table if P2==0 and to a BTree index
** if P2==1.  A BTree table must have an integer key and can have arbitrary
** data.  A BTree index has no data but can have an arbitrary key.
**
** This opcode is used for tables that exist for the duration of a single
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.
*/
case OP_OpenTemp: {
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = &p->aCsr[i];
  sqliteVdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);

  if( rc==SQLITE_OK ){
    rc = sqliteBtreeBeginTrans(pCx->pBt);
  }
  if( rc==SQLITE_OK ){
    if( pOp->p2 ){
      int pgno;
      rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
      if( rc==SQLITE_OK ){
        rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
      }
    }else{
      rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
    }
  }
  break;
}

/* Opcode: OpenPseudo P1 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  Any attempt to write a second row of data causes the
** first row to be deleted.  All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  if( expandCursorArraySize(p, i) ) goto no_mem;
  pCx = &p->aCsr[i];
  sqliteVdbeCleanupCursor(pCx);
  memset(pCx, 0, sizeof(*pCx));
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  break;
}

/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
  int i = pOp->p1;
  if( i>=0 && inCursor ){
    sqliteVdbeCleanupCursor(&p->aCsr[i]);
  }
  break;
}

/* Opcode: MoveTo P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to an entry with a matching key.  If
** the table contains no record with a matching key, then the cursor
** is left pointing at the first record that is greater than the key.
** If there are no records greater than the key and P2 is not zero,
** then an immediate jump to P2 is made.
**
** See also: Found, NotFound, Distinct, MoveLt
*/
/* Opcode: MoveLt P1 P2 *
**
** Pop the top of the stack and use its value as a key.  Reposition
** cursor P1 so that it points to the entry with the largest key that is
** less than the key popped from the stack.
** If there are no records less than than the key and P2
** is not zero then an immediate jump to P2 is made.
**
** See also: MoveTo
*/
case OP_MoveLt:
case OP_MoveTo: {
  int i = pOp->p1;
  Cursor *pC;

  assert( pTos>=p->aStack );
  assert( i>=0 && inCursor );
  pC = &p->aCsr[i];
  if( pC->pCursor!=0 ){
    int res, oc;
    pC->nullRow = 0;
    if( pTos->flags & MEM_Int ){
      int iKey = intToKey(pTos->i);
      if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
        pC->movetoTarget = iKey;
        pC->deferredMoveto = 1;
        Release(pTos);
        pTos--;
        break;
      }
      sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
      pC->lastRecno = pTos->i;
      pC->recnoIsValid = res==0;
    }else{
      Stringify(pTos);
      sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
      pC->recnoIsValid = 0;
    }
    pC->deferredMoveto = 0;
    sqlite_search_count++;
    oc = pOp->opcode;
    if( oc==OP_MoveTo && res<0 ){
      sqliteBtreeNext(pC->pCursor, &res);
      pC->recnoIsValid = 0;
      if( res && pOp->p2>0 ){
        pc = pOp->p2 - 1;
      }
    }else if( oc==OP_MoveLt ){
      if( res>=0 ){
        sqliteBtreePrevious(pC->pCursor, &res);
        pC->recnoIsValid = 0;
      }else{
        /* res might be negative because the table is empty.  Check to
        ** see if this is the case.
        */
        int keysize;
        res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
      }
      if( res && pOp->p2>0 ){
        pc = pOp->p2 - 1;
      }
    }
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: Distinct P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key does
** not exist in the table of cursor P1, then jump to P2.  If the record
** does already exist, then fall thru.  The cursor is left pointing
** at the record if it exists. The key is not popped from the stack.
**
** This operation is similar to NotFound except that this operation
** does not pop the key from the stack.
**
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: Found P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key
** does exist in table of P1, then jump to P2.  If the record
** does not exist, then fall thru.  The cursor is left pointing
** to the record if it exists.  The key is popped from the stack.
**
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: NotFound P1 P2 *
**
** Use the top of the stack as a string key.  If a record with that key
** does not exist in table of P1, then jump to P2.  If the record
** does exist, then fall thru.  The cursor is left pointing to the
** record if it exists.  The key is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:
case OP_NotFound:
case OP_Found: {
  int i = pOp->p1;
  int alreadyExists = 0;
  Cursor *pC;
  assert( pTos>=p->aStack );
  assert( i>=0 && inCursor );
  if( (pC = &p->aCsr[i])->pCursor!=0 ){
    int res, rx;
    Stringify(pTos);
    rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
    alreadyExists = rx==SQLITE_OK && res==0;
    pC->deferredMoveto = 0;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !alreadyExists ) pc = pOp->p2 - 1;
  }
  if( pOp->opcode!=OP_Distinct ){
    Release(pTos);
    pTos--;
  }
  break;
}

/* Opcode: IsUnique P1 P2 *
**
** The top of the stack is an integer record number.  Call this
** record number R.  The next on the stack is an index key created
** using MakeIdxKey.  Call it K.  This instruction pops R from the
** stack but it leaves K unchanged.
**
** P1 is an index.  So all but the last four bytes of K are an
** index string.  The last four bytes of K are a record number.
**
** This instruction asks if there is an entry in P1 where the
** index string matches K but the record number is different
** from R.  If there is no such entry, then there is an immediate
** jump to P2.  If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {
  int i = pOp->p1;
  Mem *pNos = &pTos[-1];
  BtCursor *pCrsr;
  int R;

  /* Pop the value R off the top of the stack
  */
  assert( pNos>=p->aStack );
  Integerify(pTos);
  R = pTos->i;
  pTos--;
  assert( i>=0 && i<=p->nCursor );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int res, rc;
    int v;         /* The record number on the P1 entry that matches K */
    char *zKey;    /* The value of K */
    int nKey;      /* Number of bytes in K */

    /* Make sure K is a string and make zKey point to K
    */
    Stringify(pNos);
    zKey = pNos->z;
    nKey = pNos->n;
    assert( nKey >= 4 );

    /* Search for an entry in P1 where all but the last four bytes match K.
    ** If there is no such entry, jump immediately to P2.
    */
    assert( p->aCsr[i].deferredMoveto==0 );
    rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
    if( res<0 ){
      rc = sqliteBtreeNext(pCrsr, &res);
      if( res ){
        pc = pOp->p2 - 1;
        break;
      }
    }
    rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
    if( res>0 ){
      pc = pOp->p2 - 1;
      break;
    }

    /* At this point, pCrsr is pointing to an entry in P1 where all but
    ** the last for bytes of the key match K.  Check to see if the last
    ** four bytes of the key are different from R.  If the last four
    ** bytes equal R then jump immediately to P2.
    */
    sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
    v = keyToInt(v);
    if( v==R ){
      pc = pOp->p2 - 1;
      break;
    }

    /* The last four bytes of the key are different from R.  Convert the
    ** last four bytes of the key into an integer and push it onto the
    ** stack.  (These bytes are the record number of an entry that
    ** violates a UNIQUE constraint.)
    */
    pTos++;
    pTos->i = v;
    pTos->flags = MEM_Int;
  }
  break;
}

/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key.  If a record with that key
** does not exist in table of P1, then jump to P2.  If the record
** does exist, then fall thru.  The cursor is left pointing to the
** record if it exists.  The integer key is popped from the stack.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {
  int i = pOp->p1;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && inCursor );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int res, rx, iKey;
    assert( pTos->flags & MEM_Int );
    iKey = intToKey(pTos->i);
    rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
    p->aCsr[i].lastRecno = pTos->i;
    p->aCsr[i].recnoIsValid = res==0;
    p->aCsr[i].nullRow = 0;
    if( rx!=SQLITE_OK || res!=0 ){
      pc = pOp->p2 - 1;
      p->aCsr[i].recnoIsValid = 0;
    }
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: NewRecno P1 * *
**
** Get a new integer record number used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is pushed 
** onto the stack.
*/
case OP_NewRecno: {
  int i = pOp->p1;
  int v = 0;
  Cursor *pC;
  assert( i>=0 && inCursor );
  if( (pC = &p->aCsr[i])->pCursor==0 ){
    v = 0;
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
    **
    ** The second algorithm is to select a rowid at random and see if
    ** it already exists in the table.  If it does not exist, we have
    ** succeeded.  If the random rowid does exist, we select a new one
    ** and try again, up to 1000 times.
    **
    ** For a table with less than 2 billion entries, the probability
    ** of not finding a unused rowid is about 1.0e-300.  This is a 
    ** non-zero probability, but it is still vanishingly small and should
    ** never cause a problem.  You are much, much more likely to have a
    ** hardware failure than for this algorithm to fail.
    **
    ** The analysis in the previous paragraph assumes that you have a good
    ** source of random numbers.  Is a library function like lrand48()
    ** good enough?  Maybe. Maybe not. It's hard to know whether there
    ** might be subtle bugs is some implementations of lrand48() that
    ** could cause problems. To avoid uncertainty, SQLite uses its own 
    ** random number generator based on the RC4 algorithm.
    **
    ** To promote locality of reference for repetitive inserts, the
    ** first few attempts at chosing a random rowid pick values just a little
    ** larger than the previous rowid.  This has been shown experimentally
    ** to double the speed of the COPY operation.
    */
    int res, rx, cnt, x;
    cnt = 0;
    if( !pC->useRandomRowid ){
      if( pC->nextRowidValid ){
        v = pC->nextRowid;
      }else{
        rx = sqliteBtreeLast(pC->pCursor, &res);
        if( res ){
          v = 1;
        }else{
          sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
          v = keyToInt(v);
          if( v==0x7fffffff ){
            pC->useRandomRowid = 1;
          }else{
            v++;
          }
        }
      }
      if( v<0x7fffffff ){
        pC->nextRowidValid = 1;
        pC->nextRowid = v+1;
      }else{
        pC->nextRowidValid = 0;
      }
    }
    if( pC->useRandomRowid ){
      v = db->priorNewRowid;
      cnt = 0;
      do{
        if( v==0 || cnt>2 ){
          sqliteRandomness(sizeof(v), &v);
          if( cnt<5 ) v &= 0xffffff;
        }else{
          unsigned char r;
          sqliteRandomness(1, &r);
          v += r + 1;
        }
        if( v==0 ) continue;
        x = intToKey(v);
        rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
        cnt++;
      }while( cnt<1000 && rx==SQLITE_OK && res==0 );
      db->priorNewRowid = v;
      if( rx==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;
        goto abort_due_to_error;
      }
    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;
  }
  pTos++;
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: PutIntKey P1 P2 *
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be an integer.  The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
** stored for subsequent return by the sqlite_last_insert_rowid() function
** (otherwise it's unmodified).
*/
/* Opcode: PutStrKey P1 * *
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be a string.  The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:
case OP_PutStrKey: {
  Mem *pNos = &pTos[-1];
  int i = pOp->p1;
  Cursor *pC;
  assert( pNos>=p->aStack );
  assert( i>=0 && inCursor );
  if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
    char *zKey;
    int nKey, iKey;
    if( pOp->opcode==OP_PutStrKey ){
      Stringify(pNos);
      nKey = pNos->n;
      zKey = pNos->z;
    }else{
      assert( pNos->flags & MEM_Int );
      nKey = sizeof(int);
      iKey = intToKey(pNos->i);
      zKey = (char*)&iKey;
      if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
      if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
      if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
      if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
        pC->nextRowidValid = 0;
      }
    }
    if( pTos->flags & MEM_Null ){
      pTos->z = 0;
      pTos->n = 0;
    }else{
      assert( pTos->flags & MEM_Str );
    }
    if( pC->pseudoTable ){
      /* PutStrKey does not work for pseudo-tables.
      ** The following assert makes sure we are not trying to use
      ** PutStrKey on a pseudo-table
      */
      assert( pOp->opcode==OP_PutIntKey );
      sqliteFree(pC->pData);
      pC->iKey = iKey;
      pC->nData = pTos->n;
      if( pTos->flags & MEM_Dyn ){
        pC->pData = pTos->z;
        pTos->flags = MEM_Null;
      }else{
        pC->pData = sqliteMallocRaw( pC->nData );
        if( pC->pData ){
          memcpy(pC->pData, pTos->z, pC->nData);
        }
      }
      pC->nullRow = 0;
    }else{
      rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
    }
    pC->recnoIsValid = 0;
    pC->deferredMoveto = 0;
  }
  popStack(&pTos, 2);
  break;
}

/* Opcode: Delete P1 P2 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).  If OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/
case OP_Delete: {
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && inCursor );
  pC = &p->aCsr[i];
  if( pC->pCursor!=0 ){
    sqliteVdbeCursorMoveto(pC);
    rc = sqliteBtreeDelete(pC->pCursor);
    pC->nextRowidValid = 0;
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
  if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
  break;
}

/* Opcode: SetCounts * * *
**
** Called at end of statement.  Updates lsChange (last statement change count)
** and resets csChange (current statement change count) to 0.
*/
case OP_SetCounts: {
  db->lsChange=db->csChange;
  db->csChange=0;
  break;
}

/* Opcode: KeyAsData P1 P2 *
**
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
** off (if P2==0).  In key-as-data mode, the OP_Column opcode pulls
** data off of the key rather than the data.  This is used for
** processing compound selects.
*/
case OP_KeyAsData: {
  int i = pOp->p1;
  assert( i>=0 && inCursor );
  p->aCsr[i].keyAsData = pOp->p2;
  break;
}

/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data.  It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
/* Opcode: RowKey P1 * *
**
** Push onto the stack the complete row key for cursor P1.
** There is no interpretation of the key.  It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
case OP_RowKey:
case OP_RowData: {
  int i = pOp->p1;
  Cursor *pC;
  int n;

  pTos++;
  assert( i>=0 && inCursor );
  pC = &p->aCsr[i];
  if( pC->nullRow ){
    pTos->flags = MEM_Null;
  }else if( pC->pCursor!=0 ){
    BtCursor *pCrsr = pC->pCursor;
    sqliteVdbeCursorMoveto(pC);
    if( pC->nullRow ){
      pTos->flags = MEM_Null;
      break;
    }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
      sqliteBtreeKeySize(pCrsr, &n);
    }else{
      sqliteBtreeDataSize(pCrsr, &n);
    }
    pTos->n = n;
    if( n<=NBFS ){
      pTos->flags = MEM_Str | MEM_Short;
      pTos->z = pTos->zShort;
    }else{
      char *z = sqliteMallocRaw( n );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Str | MEM_Dyn;
      pTos->z = z;
    }
    if( pC->keyAsData || pOp->opcode==OP_RowKey ){
      sqliteBtreeKey(pCrsr, 0, n, pTos->z);
    }else{
      sqliteBtreeData(pCrsr, 0, n, pTos->z);
    }
  }else if( pC->pseudoTable ){
    pTos->n = pC->nData;
    pTos->z = pC->pData;
    pTos->flags = MEM_Str|MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as
** a structure built using the MakeRecord instruction.
** (See the MakeRecord opcode for additional information about
** the format of the data.)
** Push onto the stack the value of the P2-th column contained
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
** data.
**
** If P1 is negative, then the record is stored on the stack rather
** than in a table.  For P1==-1, the top of the stack is used.
** For P1==-2, the next on the stack is used.  And so forth.  The
** value pushed is always just a pointer into the record which is
** stored further down on the stack.  The column value is not copied.
*/
case OP_Column: {
  int amt, offset, end, payloadSize;
  int i = pOp->p1;
  int p2 = pOp->p2;
  Cursor *pC;
  char *zRec;
  BtCursor *pCrsr;
  int idxWidth;
  unsigned char aHdr[10];

  assert( inCursor );
  pTos++;
  if( i<0 ){
    assert( &pTos[i]>=p->aStack );
    assert( pTos[i].flags & MEM_Str );
    zRec = pTos[i].z;
    payloadSize = pTos[i].n;
  }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
    sqliteVdbeCursorMoveto(pC);
    zRec = 0;
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->keyAsData ){
      sqliteBtreeKeySize(pCrsr, &payloadSize);
    }else{
      sqliteBtreeDataSize(pCrsr, &payloadSize);
    }
  }else if( pC->pseudoTable ){
    payloadSize = pC->nData;
    zRec = pC->pData;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    payloadSize = 0;
  }

  /* Figure out how many bytes in the column data and where the column
  ** data begins.
  */
  if( payloadSize==0 ){
    pTos->flags = MEM_Null;
    break;
  }else if( payloadSize<256 ){
    idxWidth = 1;
  }else if( payloadSize<65536 ){
    idxWidth = 2;
  }else{
    idxWidth = 3;
  }

  /* Figure out where the requested column is stored and how big it is.
  */
  if( payloadSize < idxWidth*(p2+1) ){
    rc = SQLITE_CORRUPT;
    goto abort_due_to_error;
  }
  if( zRec ){
    memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
  }else if( pC->keyAsData ){
    sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
  }else{
    sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
  }
  offset = aHdr[0];
  end = aHdr[idxWidth];
  if( idxWidth>1 ){
    offset |= aHdr[1]<<8;
    end |= aHdr[idxWidth+1]<<8;
    if( idxWidth>2 ){
      offset |= aHdr[2]<<16;
      end |= aHdr[idxWidth+2]<<16;
    }
  }
  amt = end - offset;
  if( amt<0 || offset<0 || end>payloadSize ){
    rc = SQLITE_CORRUPT;
    goto abort_due_to_error;
  }

  /* amt and offset now hold the offset to the start of data and the
  ** amount of data.  Go get the data and put it on the stack.
  */
  pTos->n = amt;
  if( amt==0 ){
    pTos->flags = MEM_Null;
  }else if( zRec ){
    pTos->flags = MEM_Str | MEM_Ephem;
    pTos->z = &zRec[offset];
  }else{
    if( amt<=NBFS ){
      pTos->flags = MEM_Str | MEM_Short;
      pTos->z = pTos->zShort;
    }else{
      char *z = sqliteMallocRaw( amt );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Str | MEM_Dyn;
      pTos->z = z;
    }
    if( pC->keyAsData ){
      sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
    }else{
      sqliteBtreeData(pCrsr, offset, amt, pTos->z);
    }
  }
  break;
}

/* Opcode: Recno P1 * *
**
** Push onto the stack an integer which is the first 4 bytes of the
** the key to the current entry in a sequential scan of the database
** file P1.  The sequential scan should have been started using the 
** Next opcode.
*/
case OP_Recno: {
  int i = pOp->p1;
  Cursor *pC;
  int v;

  assert( i>=0 && inCursor );
  pC = &p->aCsr[i];
  sqliteVdbeCursorMoveto(pC);
  pTos++;
  if( pC->recnoIsValid ){
    v = pC->lastRecno;
  }else if( pC->pseudoTable ){
    v = keyToInt(pC->iKey);
  }else if( pC->nullRow || pC->pCursor==0 ){
    pTos->flags = MEM_Null;
    break;
  }else{
    assert( pC->pCursor!=0 );
    sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
    v = keyToInt(v);
  }
  pTos->i = v;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
** pointing to and push the key onto the stack as a string.
**
** Compare this opcode to Recno.  The Recno opcode extracts the first
** 4 bytes of the key and pushes those bytes onto the stack as an
** integer.  This instruction pushes the entire key as a string.
**
** This opcode may not be used on a pseudo-table.
*/
case OP_FullKey: {
  int i = pOp->p1;
  BtCursor *pCrsr;

  assert( p->aCsr[i].keyAsData );
  assert( !p->aCsr[i].pseudoTable );
  assert( i>=0 && inCursor );
  pTos++;
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int amt;
    char *z;

    sqliteVdbeCursorMoveto(&p->aCsr[i]);
    sqliteBtreeKeySize(pCrsr, &amt);
    if( amt<=0 ){
      rc = SQLITE_CORRUPT;
      goto abort_due_to_error;
    }
    if( amt>NBFS ){
      z = sqliteMallocRaw( amt );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Str | MEM_Dyn;
    }else{
      z = pTos->zShort;
      pTos->flags = MEM_Str | MEM_Short;
    }
    sqliteBtreeKey(pCrsr, 0, amt, z);
    pTos->z = z;
    pTos->n = amt;
  }
  break;
}

/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always push 
** a NULL onto the stack.
*/
case OP_NullRow: {
  int i = pOp->p1;

  assert( i>=0 && inCursor );
  p->aCsr[i].nullRow = 1;
  p->aCsr[i].recnoIsValid = 0;
  break;
}

/* Opcode: Last P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;

  assert( i>=0 && inCursor );
  pC = &p->aCsr[i];
  if( (pCrsr = pC->pCursor)!=0 ){
    int res;
    rc = sqliteBtreeLast(pCrsr, &res);
    pC->nullRow = res;
    pC->deferredMoveto = 0;
    if( res && pOp->p2>0 ){
      pc = pOp->p2 - 1;
    }
  }else{
    pC->nullRow = 0;
  }
  break;
}

/* Opcode: Rewind P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;

  assert( i>=0 && inCursor );
  pC = &p->aCsr[i];
  if( (pCrsr = pC->pCursor)!=0 ){
    int res;
    rc = sqliteBtreeFirst(pCrsr, &res);
    pC->atFirst = res==0;
    pC->nullRow = res;
    pC->deferredMoveto = 0;
    if( res && pOp->p2>0 ){
      pc = pOp->p2 - 1;
    }
  }else{
    pC->nullRow = 0;
  }
  break;
}

/* Opcode: Next P1 P2 *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:
case OP_Next: {
  Cursor *pC;
  BtCursor *pCrsr;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1nCursor );
  pC = &p->aCsr[pOp->p1];
  if( (pCrsr = pC->pCursor)!=0 ){
    int res;
    if( pC->nullRow ){
      res = 1;
    }else{
      assert( pC->deferredMoveto==0 );
      rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
                                  sqliteBtreePrevious(pCrsr, &res);
      pC->nullRow = res;
    }
    if( res==0 ){
      pc = pOp->p2 - 1;
      sqlite_search_count++;
    }
  }else{
    pC->nullRow = 1;
  }
  pC->recnoIsValid = 0;
  break;
}

/* Opcode: IdxPut P1 P2 P3
**
** The top of the stack holds a SQL index key made using the
** MakeIdxKey instruction.  This opcode writes that key into the
** index P1.  Data for the entry is nil.
**
** If P2==1, then the key must be unique.  If the key is not unique,
** the program aborts with a SQLITE_CONSTRAINT error and the database
** is rolled back.  If P3 is not null, then it becomes part of the
** error message returned with the SQLITE_CONSTRAINT.
*/
case OP_IdxPut: {
  int i = pOp->p1;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && inCursor );
  assert( pTos->flags & MEM_Str );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int nKey = pTos->n;
    const char *zKey = pTos->z;
    if( pOp->p2 ){
      int res, n;
      assert( nKey >= 4 );
      rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      while( res!=0 ){
        int c;
        sqliteBtreeKeySize(pCrsr, &n);
        if( n==nKey
           && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
           && c==0
        ){
          rc = SQLITE_CONSTRAINT;
          if( pOp->p3 && pOp->p3[0] ){
            sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
          }
          goto abort_due_to_error;
        }
        if( res<0 ){
          sqliteBtreeNext(pCrsr, &res);
          res = +1;
        }else{
          break;
        }
      }
    }
    rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
    assert( p->aCsr[i].deferredMoveto==0 );
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the MakeIdxKey opcode.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
  int i = pOp->p1;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  assert( i>=0 && inCursor );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int rx, res;
    rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
    if( rx==SQLITE_OK && res==0 ){
      rc = sqliteBtreeDelete(pCrsr);
    }
    assert( p->aCsr[i].deferredMoveto==0 );
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: IdxRecno P1 * *
**
** Push onto the stack an integer which is the last 4 bytes of the
** the key to the current entry in index P1.  These 4 bytes should
** be the record number of the table entry to which this index entry
** points.
**
** See also: Recno, MakeIdxKey.
*/
case OP_IdxRecno: {
  int i = pOp->p1;
  BtCursor *pCrsr;

  assert( i>=0 && inCursor );
  pTos++;
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int v;
    int sz;
    assert( p->aCsr[i].deferredMoveto==0 );
    sqliteBtreeKeySize(pCrsr, &sz);
    if( szflags = MEM_Null;
    }else{
      sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
      v = keyToInt(v);
      pTos->i = v;
      pTos->flags = MEM_Int;
    }
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: IdxGT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
** index entry.  If the index entry is greater than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
** index entry.  If the index entry is greater than or equal to 
** the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxLT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
** index entry.  If the index entry is less than the top of the stack
** then jump to P2.  Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
case OP_IdxLT:
case OP_IdxGT:
case OP_IdxGE: {
  int i= pOp->p1;
  BtCursor *pCrsr;

  assert( i>=0 && inCursor );
  assert( pTos>=p->aStack );
  if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
    int res, rc;
 
    Stringify(pTos);
    assert( p->aCsr[i].deferredMoveto==0 );
    rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){
      res++;
    }
    if( res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: IdxIsNull P1 P2 *
**
** The top of the stack contains an index entry such as might be generated
** by the MakeIdxKey opcode.  This routine looks at the first P1 fields of
** that key.  If any of the first P1 fields are NULL, then a jump is made
** to address P2.  Otherwise we fall straight through.
**
** The index entry is always popped from the stack.
*/
case OP_IdxIsNull: {
  int i = pOp->p1;
  int k, n;
  const char *z;

  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  z = pTos->z;
  n = pTos->n;
  for(k=0; k0; i--){
    if( z[k]=='a' ){
      pc = pOp->p2-1;
      break;
    }
    while( kaDb[pOp->p2].pBt, pOp->p1);
  break;
}

/* Opcode: Clear P1 P2 *
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1.  But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0.  If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear: {
  rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
  break;
}

/* Opcode: CreateTable * P2 P3
**
** Allocate a new table in the main database file if P2==0 or in the
** auxiliary database file if P2==1.  Push the page number
** for the root page of the new table onto the stack.
**
** The root page number is also written to a memory location that P3
** points to.  This is the mechanism is used to write the root page
** number into the parser's internal data structures that describe the
** new table.
**
** The difference between a table and an index is this:  A table must
** have a 4-byte integer key and can have arbitrary data.  An index
** has an arbitrary key but no data.
**
** See also: CreateIndex
*/
/* Opcode: CreateIndex * P2 P3
**
** Allocate a new index in the main database file if P2==0 or in the
** auxiliary database file if P2==1.  Push the page number of the
** root page of the new index onto the stack.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:
case OP_CreateTable: {
  int pgno;
  assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
  assert( pOp->p2>=0 && pOp->p2nDb );
  assert( db->aDb[pOp->p2].pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
  }else{
    rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
  }
  pTos++;
  if( rc==SQLITE_OK ){
    pTos->i = pgno;
    pTos->flags = MEM_Int;
    *(u32*)pOp->p3 = pgno;
    pOp->p3 = 0;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: IntegrityCk P1 P2 *
**
** Do an analysis of the currently open database.  Push onto the
** stack the text of an error message describing any problems.
** If there are no errors, push a "ok" onto the stack.
**
** P1 is the index of a set that contains the root page numbers
** for all tables and indices in the main database file.  The set
** is cleared by this opcode.  In other words, after this opcode
** has executed, the set will be empty.
**
** If P2 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used for testing purposes only.
*/
case OP_IntegrityCk: {
  int nRoot;
  int *aRoot;
  int iSet = pOp->p1;
  Set *pSet;
  int j;
  HashElem *i;
  char *z;

  assert( iSet>=0 && iSetnSet );
  pTos++;
  pSet = &p->aSet[iSet];
  nRoot = sqliteHashCount(&pSet->hash);
  aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
    toInt((char*)sqliteHashKey(i), &aRoot[j]);
  }
  aRoot[j] = 0;
  sqliteHashClear(&pSet->hash);
  pSet->prev = 0;
  z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
  if( z==0 || z[0]==0 ){
    if( z ) sqliteFree(z);
    pTos->z = "ok";
    pTos->n = 3;
    pTos->flags = MEM_Str | MEM_Static;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  sqliteFree(aRoot);
  break;
}

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {
  Keylist *pKeylist;
  assert( pTos>=p->aStack );
  pKeylist = p->pList;
  if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
    pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
    if( pKeylist==0 ) goto no_mem;
    pKeylist->nKey = 1000;
    pKeylist->nRead = 0;
    pKeylist->nUsed = 0;
    pKeylist->pNext = p->pList;
    p->pList = pKeylist;
  }
  Integerify(pTos);
  pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: ListRewind * * *
**
** Rewind the temporary buffer back to the beginning.
*/
case OP_ListRewind: {
  /* What this opcode codes, really, is reverse the order of the
  ** linked list of Keylist structures so that they are read out
  ** in the same order that they were read in. */
  Keylist *pRev, *pTop;
  pRev = 0;
  while( p->pList ){
    pTop = p->pList;
    p->pList = pTop->pNext;
    pTop->pNext = pRev;
    pRev = pTop;
  }
  p->pList = pRev;
  break;
}

/* Opcode: ListRead * P2 *
**
** Attempt to read an integer from the temporary storage buffer
** and push it onto the stack.  If the storage buffer is empty, 
** push nothing but instead jump to P2.
*/
case OP_ListRead: {
  Keylist *pKeylist;
  CHECK_FOR_INTERRUPT;
  pKeylist = p->pList;
  if( pKeylist!=0 ){
    assert( pKeylist->nRead>=0 );
    assert( pKeylist->nReadnUsed );
    assert( pKeylist->nReadnKey );
    pTos++;
    pTos->i = pKeylist->aKey[pKeylist->nRead++];
    pTos->flags = MEM_Int;
    if( pKeylist->nRead>=pKeylist->nUsed ){
      p->pList = pKeylist->pNext;
      sqliteFree(pKeylist);
    }
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: ListReset * * *
**
** Reset the temporary storage buffer so that it holds nothing.
*/
case OP_ListReset: {
  if( p->pList ){
    sqliteVdbeKeylistFree(p->pList);
    p->pList = 0;
  }
  break;
}

/* Opcode: ListPush * * * 
**
** Save the current Vdbe list such that it can be restored by a ListPop
** opcode. The list is empty after this is executed.
*/
case OP_ListPush: {
  p->keylistStackDepth++;
  assert(p->keylistStackDepth > 0);
  p->keylistStack = sqliteRealloc(p->keylistStack, 
          sizeof(Keylist *) * p->keylistStackDepth);
  if( p->keylistStack==0 ) goto no_mem;
  p->keylistStack[p->keylistStackDepth - 1] = p->pList;
  p->pList = 0;
  break;
}

/* Opcode: ListPop * * * 
**
** Restore the Vdbe list to the state it was in when ListPush was last
** executed.
*/
case OP_ListPop: {
  assert(p->keylistStackDepth > 0);
  p->keylistStackDepth--;
  sqliteVdbeKeylistFree(p->pList);
  p->pList = p->keylistStack[p->keylistStackDepth];
  p->keylistStack[p->keylistStackDepth] = 0;
  if( p->keylistStackDepth == 0 ){
    sqliteFree(p->keylistStack);
    p->keylistStack = 0;
  }
  break;
}

/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {
  p->contextStackDepth++;
  assert(p->contextStackDepth > 0);
  p->contextStack = sqliteRealloc(p->contextStack, 
          sizeof(Context) * p->contextStackDepth);
  if( p->contextStack==0 ) goto no_mem;
  p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
  p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
  p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
  break;
}

/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {
  assert(p->contextStackDepth > 0);
  p->contextStackDepth--;
  p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
  p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
  p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
  if( p->contextStackDepth == 0 ){
    sqliteFree(p->contextStack);
    p->contextStack = 0;
  }
  break;
}

/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data.  Pop both from the stack
** and put them on the sorter.  The key and data should have been
** made using SortMakeKey and SortMakeRec, respectively.
*/
case OP_SortPut: {
  Mem *pNos = &pTos[-1];
  Sorter *pSorter;
  assert( pNos>=p->aStack );
  if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
  pSorter = sqliteMallocRaw( sizeof(Sorter) );
  if( pSorter==0 ) goto no_mem;
  pSorter->pNext = p->pSort;
  p->pSort = pSorter;
  assert( pTos->flags & MEM_Dyn );
  pSorter->nKey = pTos->n;
  pSorter->zKey = pTos->z;
  assert( pNos->flags & MEM_Dyn );
  pSorter->nData = pNos->n;
  pSorter->pData = pNos->z;
  pTos -= 2;
  break;
}

/* Opcode: SortMakeRec P1 * *
**
** The top P1 elements are the arguments to a callback.  Form these
** elements into a single data entry that can be stored on a sorter
** using SortPut and later fed to a callback using SortCallback.
*/
case OP_SortMakeRec: {
  char *z;
  char **azArg;
  int nByte;
  int nField;
  int i;
  Mem *pRec;

  nField = pOp->p1;
  pRec = &pTos[1-nField];
  assert( pRec>=p->aStack );
  nByte = 0;
  for(i=0; iflags & MEM_Null)==0 ){
      Stringify(pRec);
      nByte += pRec->n;
    }
  }
  nByte += sizeof(char*)*(nField+1);
  azArg = sqliteMallocRaw( nByte );
  if( azArg==0 ) goto no_mem;
  z = (char*)&azArg[nField+1];
  for(pRec=&pTos[1-nField], i=0; iflags & MEM_Null ){
      azArg[i] = 0;
    }else{
      azArg[i] = z;
      memcpy(z, pRec->z, pRec->n);
      z += pRec->n;
    }
  }
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nByte;
  pTos->z = (char*)azArg;
  pTos->flags = MEM_Str | MEM_Dyn;
  break;
}

/* Opcode: SortMakeKey * * P3
**
** Convert the top few entries of the stack into a sort key.  The
** number of stack entries consumed is the number of characters in 
** the string P3.  One character from P3 is prepended to each entry.
** The first character of P3 is prepended to the element lowest in
** the stack and the last character of P3 is prepended to the top of
** the stack.  All stack entries are separated by a \000 character
** in the result.  The whole key is terminated by two \000 characters
** in a row.
**
** "N" is substituted in place of the P3 character for NULL values.
**
** See also the MakeKey and MakeIdxKey opcodes.
*/
case OP_SortMakeKey: {
  char *zNewKey;
  int nByte;
  int nField;
  int i, j, k;
  Mem *pRec;

  nField = strlen(pOp->p3);
  pRec = &pTos[1-nField];
  nByte = 1;
  for(i=0; iflags & MEM_Null ){
      nByte += 2;
    }else{
      Stringify(pRec);
      nByte += pRec->n+2;
    }
  }
  zNewKey = sqliteMallocRaw( nByte );
  if( zNewKey==0 ) goto no_mem;
  j = 0;
  k = 0;
  for(pRec=&pTos[1-nField], i=0; iflags & MEM_Null ){
      zNewKey[j++] = 'N';
      zNewKey[j++] = 0;
      k++;
    }else{
      zNewKey[j++] = pOp->p3[k++];
      memcpy(&zNewKey[j], pRec->z, pRec->n-1);
      j += pRec->n-1;
      zNewKey[j++] = 0;
    }
  }
  zNewKey[j] = 0;
  assert( jn = nByte;
  pTos->flags = MEM_Str|MEM_Dyn;
  pTos->z = zNewKey;
  break;
}

/* Opcode: Sort * * *
**
** Sort all elements on the sorter.  The algorithm is a
** mergesort.
*/
case OP_Sort: {
  int i;
  Sorter *pElem;
  Sorter *apSorter[NSORT];
  for(i=0; ipSort ){
    pElem = p->pSort;
    p->pSort = pElem->pNext;
    pElem->pNext = 0;
    for(i=0; i=NSORT-1 ){
      apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
    }
  }
  pElem = 0;
  for(i=0; ipSort = pElem;
  break;
}

/* Opcode: SortNext * P2 *
**
** Push the data for the topmost element in the sorter onto the
** stack, then remove the element from the sorter.  If the sorter
** is empty, push nothing on the stack and instead jump immediately 
** to instruction P2.
*/
case OP_SortNext: {
  Sorter *pSorter = p->pSort;
  CHECK_FOR_INTERRUPT;
  if( pSorter!=0 ){
    p->pSort = pSorter->pNext;
    pTos++;
    pTos->z = pSorter->pData;
    pTos->n = pSorter->nData;
    pTos->flags = MEM_Str|MEM_Dyn;
    sqliteFree(pSorter->zKey);
    sqliteFree(pSorter);
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: SortCallback P1 * *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction.  Pop this record from the stack and invoke the
** callback on it.
*/
case OP_SortCallback: {
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  p->nCallback++;
  p->pc = pc+1;
  p->azResColumn = (char**)pTos->z;
  assert( p->nResColumn==pOp->p1 );
  p->popStack = 1;
  p->pTos = pTos;
  return SQLITE_ROW;
}

/* Opcode: SortReset * * *
**
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {
  sqliteVdbeSorterReset(p);
  break;
}

/* Opcode: FileOpen * * P3
**
** Open the file named by P3 for reading using the FileRead opcode.
** If P3 is "stdin" then open standard input for reading.
*/
case OP_FileOpen: {
  assert( pOp->p3!=0 );
  if( p->pFile ){
    if( p->pFile!=stdin ) fclose(p->pFile);
    p->pFile = 0;
  }
  if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
    p->pFile = stdin;
  }else{
    p->pFile = fopen(pOp->p3, "r");
  }
  if( p->pFile==0 ){
    sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: FileRead P1 P2 P3
**
** Read a single line of input from the open file (the file opened using
** FileOpen).  If we reach end-of-file, jump immediately to P2.  If
** we are able to get another line, split the line apart using P3 as
** a delimiter.  There should be P1 fields.  If the input line contains
** more than P1 fields, ignore the excess.  If the input line contains
** fewer than P1 fields, assume the remaining fields contain NULLs.
**
** Input ends if a line consists of just "\.".  A field containing only
** "\N" is a null field.  The backslash \ character can be used be used
** to escape newlines or the delimiter.
*/
case OP_FileRead: {
  int n, eol, nField, i, c, nDelim;
  char *zDelim, *z;
  CHECK_FOR_INTERRUPT;
  if( p->pFile==0 ) goto fileread_jump;
  nField = pOp->p1;
  if( nField<=0 ) goto fileread_jump;
  if( nField!=p->nField || p->azField==0 ){
    char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
    if( azField==0 ){ goto no_mem; }
    p->azField = azField;
    p->nField = nField;
  }
  n = 0;
  eol = 0;
  while( eol==0 ){
    if( p->zLine==0 || n+200>p->nLineAlloc ){
      char *zLine;
      p->nLineAlloc = p->nLineAlloc*2 + 300;
      zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
      if( zLine==0 ){
        p->nLineAlloc = 0;
        sqliteFree(p->zLine);
        p->zLine = 0;
        goto no_mem;
      }
      p->zLine = zLine;
    }
    if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
      eol = 1;
      p->zLine[n] = 0;
    }else{
      int c;
      while( (c = p->zLine[n])!=0 ){
        if( c=='\\' ){
          if( p->zLine[n+1]==0 ) break;
          n += 2;
        }else if( c=='\n' ){
          p->zLine[n] = 0;
          eol = 1;
          break;
        }else{
          n++;
        }
      }
    }
  }
  if( n==0 ) goto fileread_jump;
  z = p->zLine;
  if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
    goto fileread_jump;
  }
  zDelim = pOp->p3;
  if( zDelim==0 ) zDelim = "\t";
  c = zDelim[0];
  nDelim = strlen(zDelim);
  p->azField[0] = z;
  for(i=1; *z!=0 && i<=nField; i++){
    int from, to;
    from = to = 0;
    if( z[0]=='\\' && z[1]=='N' 
       && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
      if( i<=nField ) p->azField[i-1] = 0;
      z += 2 + nDelim;
      if( iazField[i] = z;
      continue;
    }
    while( z[from] ){
      if( z[from]=='\\' && z[from+1]!=0 ){
        int tx = z[from+1];
        switch( tx ){
          case 'b':  tx = '\b'; break;
          case 'f':  tx = '\f'; break;
          case 'n':  tx = '\n'; break;
          case 'r':  tx = '\r'; break;
          case 't':  tx = '\t'; break;
          case 'v':  tx = '\v'; break;
          default:   break;
        }
        z[to++] = tx;
        from += 2;
        continue;
      }
      if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
      z[to++] = z[from++];
    }
    if( z[from] ){
      z[to] = 0;
      z += from + nDelim;
      if( iazField[i] = z;
    }else{
      z[to] = 0;
      z = "";
    }
  }
  while( iazField[i++] = 0;
  }
  break;

  /* If we reach end-of-file, or if anything goes wrong, jump here.
  ** This code will cause a jump to P2 */
fileread_jump:
  pc = pOp->p2 - 1;
  break;
}

/* Opcode: FileColumn P1 * *
**
** Push onto the stack the P1-th column of the most recently read line
** from the input file.
*/
case OP_FileColumn: {
  int i = pOp->p1;
  char *z;
  assert( i>=0 && inField );
  if( p->azField ){
    z = p->azField[i];
  }else{
    z = 0;
  }
  pTos++;
  if( z ){
    pTos->n = strlen(z) + 1;
    pTos->z = z;
    pTos->flags = MEM_Str | MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {
  int i = pOp->p1;
  Mem *pMem;
  assert( pTos>=p->aStack );
  if( i>=p->nMem ){
    int nOld = p->nMem;
    Mem *aMem;
    p->nMem = i + 5;
    aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
    if( aMem==0 ) goto no_mem;
    if( aMem!=p->aMem ){
      int j;
      for(j=0; jaMem = aMem;
    if( nOldnMem ){
      memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
    }
  }
  Deephemeralize(pTos);
  pMem = &p->aMem[i];
  Release(pMem);
  *pMem = *pTos;
  if( pMem->flags & MEM_Dyn ){
    if( pOp->p2 ){
      pTos->flags = MEM_Null;
    }else{
      pMem->z = sqliteMallocRaw( pMem->n );
      if( pMem->z==0 ) goto no_mem;
      memcpy(pMem->z, pTos->z, pMem->n);
    }
  }else if( pMem->flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }
  if( pOp->p2 ){
    Release(pTos);
    pTos--;
  }
  break;
}

/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
**
** If the value is a string, then the value pushed is a pointer to
** the string that is stored in the memory location.  If the memory
** location is subsequently changed (using OP_MemStore) then the
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
  int i = pOp->p1;
  assert( i>=0 && inMem );
  pTos++;
  memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
  if( pTos->flags & MEM_Str ){
    pTos->flags |= MEM_Ephem;
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
  }
  break;
}

/* Opcode: MemIncr P1 P2 *
**
** Increment the integer valued memory cell P1 by 1.  If P2 is not zero
** and the result after the increment is greater than zero, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && inMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  pMem->i++;
  if( pOp->p2>0 && pMem->i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: AggReset * P2 *
**
** Reset the aggregator so that it no longer contains any data.
** Future aggregator elements will contain P2 values each.
*/
case OP_AggReset: {
  sqliteVdbeAggReset(&p->agg);
  p->agg.nMem = pOp->p2;
  p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
  if( p->agg.apFunc==0 ) goto no_mem;
  break;
}

/* Opcode: AggInit * P2 P3
**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
*/
case OP_AggInit: {
  int i = pOp->p2;
  assert( i>=0 && iagg.nMem );
  p->agg.apFunc[i] = (FuncDef*)pOp->p3;
  break;
}

/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.
**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left.  The integer is popped from the stack.
*/
case OP_AggFunc: {
  int n = pOp->p2;
  int i;
  Mem *pMem, *pRec;
  char **azArgv = p->zArgv;
  sqlite_func ctx;

  assert( n>=0 );
  assert( pTos->flags==MEM_Int );
  pRec = &pTos[-n];
  assert( pRec>=p->aStack );
  for(i=0; iflags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(pRec);
      azArgv[i] = pRec->z;
    }
  }
  i = pTos->i;
  assert( i>=0 && iagg.nMem );
  ctx.pFunc = (FuncDef*)pOp->p3;
  pMem = &p->agg.pCurrent->aMem[i];
  ctx.s.z = pMem->zShort;  /* Space used for small aggregate contexts */
  ctx.pAgg = pMem->z;
  ctx.cnt = ++pMem->i;
  ctx.isError = 0;
  ctx.isStep = 1;
  (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
  pMem->z = ctx.pAgg;
  pMem->flags = MEM_AggCtx;
  popStack(&pTos, n+1);
  if( ctx.isError ){
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: AggFocus * P2 *
**
** Pop the top of the stack and use that as an aggregator key.  If
** an aggregator with that same key already exists, then make the
** aggregator the current aggregator and jump to P2.  If no aggregator
** with the given key exists, create one and make it current but
** do not jump.
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {
  AggElem *pElem;
  char *zKey;
  int nKey;

  assert( pTos>=p->aStack );
  Stringify(pTos);
  zKey = pTos->z;
  nKey = pTos->n;
  pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
  if( pElem ){
    p->agg.pCurrent = pElem;
    pc = pOp->p2 - 1;
  }else{
    AggInsert(&p->agg, zKey, nKey);
    if( sqlite_malloc_failed ) goto no_mem;
  }
  Release(pTos);
  pTos--;
  break; 
}

/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate.  String values are duplicated into new memory.
*/
case OP_AggSet: {
  AggElem *pFocus = AggInFocus(p->agg);
  Mem *pMem;
  int i = pOp->p2;
  assert( pTos>=p->aStack );
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && iagg.nMem );
  Deephemeralize(pTos);
  pMem = &pFocus->aMem[i];
  Release(pMem);
  *pMem = *pTos;
  if( pMem->flags & MEM_Dyn ){
    pTos->flags = MEM_Null;
  }else if( pMem->flags & MEM_Short ){
    pMem->z = pMem->zShort;
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
** of the current aggregate.  Strings are not duplicated so
** string values will be ephemeral.
*/
case OP_AggGet: {
  AggElem *pFocus = AggInFocus(p->agg);
  Mem *pMem;
  int i = pOp->p2;
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && iagg.nMem );
  pTos++;
  pMem = &pFocus->aMem[i];
  *pTos = *pMem;
  if( pTos->flags & MEM_Str ){
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
    pTos->flags |= MEM_Ephem;
  }
  if( pTos->flags & MEM_AggCtx ){
    Release(pTos);
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate.  The prior
** aggregate is deleted.  If all aggregate values have been consumed,
** jump to P2.
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggNext: {
  CHECK_FOR_INTERRUPT;
  if( p->agg.pSearch==0 ){
    p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
  }else{
    p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
  }
  if( p->agg.pSearch==0 ){
    pc = pOp->p2 - 1;
  } else {
    int i;
    sqlite_func ctx;
    Mem *aMem;
    p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
    aMem = p->agg.pCurrent->aMem;
    for(i=0; iagg.nMem; i++){
      int freeCtx;
      if( p->agg.apFunc[i]==0 ) continue;
      if( p->agg.apFunc[i]->xFinalize==0 ) continue;
      ctx.s.flags = MEM_Null;
      ctx.s.z = aMem[i].zShort;
      ctx.pAgg = (void*)aMem[i].z;
      freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
      ctx.cnt = aMem[i].i;
      ctx.isStep = 0;
      ctx.pFunc = p->agg.apFunc[i];
      (*p->agg.apFunc[i]->xFinalize)(&ctx);
      if( freeCtx ){
        sqliteFree( aMem[i].z );
      }
      aMem[i] = ctx.s;
      if( aMem[i].flags & MEM_Short ){
        aMem[i].z = aMem[i].zShort;
      }
    }
  }
  break;
}

/* Opcode: SetInsert P1 * P3
**
** If Set P1 does not exist then create it.  Then insert value
** P3 into that set.  If P3 is NULL, then insert the top of the
** stack into the set.
*/
case OP_SetInsert: {
  int i = pOp->p1;
  if( p->nSet<=i ){
    int k;
    Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
    if( aSet==0 ) goto no_mem;
    p->aSet = aSet;
    for(k=p->nSet; k<=i; k++){
      sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
    }
    p->nSet = i+1;
  }
  if( pOp->p3 ){
    sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
  }else{
    assert( pTos>=p->aStack );
    Stringify(pTos);
    sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
    Release(pTos);
    pTos--;
  }
  if( sqlite_malloc_failed ) goto no_mem;
  break;
}

/* Opcode: SetFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1.  If the element popped exists in set P1,
** then jump to P2.  Otherwise fall through.
*/
case OP_SetFound: {
  int i = pOp->p1;
  assert( pTos>=p->aStack );
  Stringify(pTos);
  if( i>=0 && inSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
    pc = pOp->p2 - 1;
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: SetNotFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1.  If the element popped does not exists in 
** set P1, then jump to P2.  Otherwise fall through.
*/
case OP_SetNotFound: {
  int i = pOp->p1;
  assert( pTos>=p->aStack );
  Stringify(pTos);
  if( i<0 || i>=p->nSet ||
       sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
    pc = pOp->p2 - 1;
  }
  Release(pTos);
  pTos--;
  break;
}

/* Opcode: SetFirst P1 P2 *
**
** Read the first element from set P1 and push it onto the stack.  If the
** set is empty, push nothing and jump immediately to P2.  This opcode is
** used in combination with OP_SetNext to loop over all elements of a set.
*/
/* Opcode: SetNext P1 P2 *
**
** Read the next element from set P1 and push it onto the stack.  If there
** are no more elements in the set, do not do the push and fall through.
** Otherwise, jump to P2 after pushing the next set element.
*/
case OP_SetFirst: 
case OP_SetNext: {
  Set *pSet;
  CHECK_FOR_INTERRUPT;
  if( pOp->p1<0 || pOp->p1>=p->nSet ){
    if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
    break;
  }
  pSet = &p->aSet[pOp->p1];
  if( pOp->opcode==OP_SetFirst ){
    pSet->prev = sqliteHashFirst(&pSet->hash);
    if( pSet->prev==0 ){
      pc = pOp->p2 - 1;
      break;
    }
  }else{
    if( pSet->prev ){
      pSet->prev = sqliteHashNext(pSet->prev);
    }
    if( pSet->prev==0 ){
      break;
    }else{
      pc = pOp->p2 - 1;
    }
  }
  pTos++;
  pTos->z = sqliteHashKey(pSet->prev);
  pTos->n = sqliteHashKeysize(pSet->prev);
  pTos->flags = MEM_Str | MEM_Ephem;
  break;
}

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {
  if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
  rc = sqliteRunVacuum(&p->zErrMsg, db);
  if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
  break;
}

/* Opcode: StackDepth * * *
**
** Push an integer onto the stack which is the depth of the stack prior
** to that integer being pushed.
*/
case OP_StackDepth: {
  int depth = (&pTos[1]) - p->aStack;
  pTos++;
  pTos->i = depth;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: StackReset * * *
**
** Pop a single integer off of the stack.  Then pop the stack
** as many times as necessary to get the depth of the stack down
** to the value of the integer that was popped.
*/
case OP_StackReset: {
  int depth, goal;
  assert( pTos>=p->aStack );
  Integerify(pTos);
  goal = pTos->i;
  depth = (&pTos[1]) - p->aStack;
  assert( goalopcode);
  sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
  rc = SQLITE_INTERNAL;
  break;
}

/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
    }

#ifdef VDBE_PROFILE
    {
      long long elapse = hwtime() - start;
      pOp->cycles += elapse;
      pOp->cnt++;
#if 0
        fprintf(stdout, "%10lld ", elapse);
        sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
    }
#endif

    /* The following code adds nothing to the actual functionality
    ** of the program.  It is only here for testing and debugging.
    ** On the other hand, it does burn CPU cycles every time through
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
    */
#ifndef NDEBUG
    /* Sanity checking on the top element of the stack */
    if( pTos>=p->aStack ){
      assert( pTos->flags!=0 );  /* Must define some type */
      if( pTos->flags & MEM_Str ){
        int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
        assert( x!=0 );            /* Strings must define a string subtype */
        assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
        assert( pTos->z!=0 );      /* Strings must have a value */
        /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
        assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
        assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
      }else{
        /* Cannot define a string subtype for non-string objects */
        assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
      }
      /* MEM_Null excludes all other types */
      assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
    }
    if( pc<-1 || pc>=p->nOp ){
      sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
      rc = SQLITE_INTERNAL;
    }
    if( p->trace && pTos>=p->aStack ){
      int i;
      fprintf(p->trace, "Stack:");
      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
        if( pTos[i].flags & MEM_Null ){
          fprintf(p->trace, " NULL");
        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
          fprintf(p->trace, " si:%d", pTos[i].i);
        }else if( pTos[i].flags & MEM_Int ){
          fprintf(p->trace, " i:%d", pTos[i].i);
        }else if( pTos[i].flags & MEM_Real ){
          fprintf(p->trace, " r:%g", pTos[i].r);
        }else if( pTos[i].flags & MEM_Str ){
          int j, k;
          char zBuf[100];
          zBuf[0] = ' ';
          if( pTos[i].flags & MEM_Dyn ){
            zBuf[1] = 'z';
            assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
          }else if( pTos[i].flags & MEM_Static ){
            zBuf[1] = 't';
            assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
          }else if( pTos[i].flags & MEM_Ephem ){
            zBuf[1] = 'e';
            assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
          }else{
            zBuf[1] = 's';
          }
          zBuf[2] = '[';
          k = 3;
          for(j=0; j<20 && jtrace, "%s", zBuf);
        }else{
          fprintf(p->trace, " ???");
        }
      }
      if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
      fprintf(p->trace,"\n");
    }
#endif
  }  /* The end of the for(;;) loop the loops through opcodes */

  /* If we reach this point, it means that execution is finished.
  */
vdbe_halt:
  CHECK_FOR_INTERRUPT
  if( rc ){
    p->rc = rc;
    rc = SQLITE_ERROR;
  }else{
    rc = SQLITE_DONE;
  }
  p->magic = VDBE_MAGIC_HALT;
  p->pTos = pTos;
  return rc;

  /* Jump to here if a malloc() fails.  It's hard to get a malloc()
  ** to fail on a modern VM computer, so this code is untested.
  */
no_mem:
  sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
  rc = SQLITE_NOMEM;
  goto vdbe_halt;

  /* Jump to here for an SQLITE_MISUSE error.
  */
abort_due_to_misuse:
  rc = SQLITE_MISUSE;
  /* Fall thru into abort_due_to_error */

  /* Jump to here for any other kind of fatal error.  The "rc" variable
  ** should hold the error number.
  */
abort_due_to_error:
  if( p->zErrMsg==0 ){
    if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
    sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
  }
  goto vdbe_halt;

  /* Jump to here if the sqlite_interrupt() API sets the interrupt
  ** flag.
  */
abort_due_to_interrupt:
  assert( db->flags & SQLITE_Interrupt );
  db->flags &= ~SQLITE_Interrupt;
  if( db->magic!=SQLITE_MAGIC_BUSY ){
    rc = SQLITE_MISUSE;
  }else{
    rc = SQLITE_INTERRUPT;
  }
  sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
  goto vdbe_halt;
}
vdbe.c454
vdbeaux.c
TypeFunctionSourceLine
VDBE sqliteVdbeCreate(sqlite *db)
Vdbe *sqliteVdbeCreate(sqlite *db){
  Vdbe *p;
  p = sqliteMalloc( sizeof(Vdbe) );
  if( p==0 ) return 0;
  p->db = db;
  if( db->pVdbe ){
    db->pVdbe->pPrev = p;
  }
  p->pNext = db->pVdbe;
  p->pPrev = 0;
  db->pVdbe = p;
  p->magic = VDBE_MAGIC_INIT;
  return p;
}
vdbeaux.c33
VOIDsqliteVdbeTrace(Vdbe *p, FILE *trace)
void sqliteVdbeTrace(Vdbe *p, FILE *trace){
  p->trace = trace;
}
vdbeaux.c51
INTsqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2)
int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  p->nOp++;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( i>=p->nOpAlloc ){
    int oldSize = p->nOpAlloc;
    Op *aNew;
    p->nOpAlloc = p->nOpAlloc*2 + 100;
    aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
    if( aNew==0 ){
      p->nOpAlloc = oldSize;
      return 0;
    }
    p->aOp = aNew;
    memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
  }
  pOp = &p->aOp[i];
  pOp->opcode = op;
  pOp->p1 = p1;
  if( p2<0 && (-1-p2)nLabel && p->aLabel[-1-p2]>=0 ){
    p2 = p->aLabel[-1-p2];
  }
  pOp->p2 = p2;
  pOp->p3 = 0;
  pOp->p3type = P3_NOTUSED;
#ifndef NDEBUG
  if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
#endif
  return i;
}
vdbeaux.c58
INTsqliteVdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3, int p3type)
int sqliteVdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3, int p3type){
  int addr = sqliteVdbeAddOp(p, op, p1, p2);
  sqliteVdbeChangeP3(p, addr, zP3, p3type);
  return addr;
}
vdbeaux.c108
INTsqliteVdbeCode(Vdbe *p, ...)
int sqliteVdbeCode(Vdbe *p, ...){
  int addr;
  va_list ap;
  int opcode, p1, p2;
  va_start(ap, p);
  addr = p->nOp;
  while( (opcode = va_arg(ap,int))!=0 ){
    p1 = va_arg(ap,int);
    p2 = va_arg(ap,int);
    sqliteVdbeAddOp(p, opcode, p1, p2);
  }
  va_end(ap);
  return addr;
}
vdbeaux.c117
INTsqliteVdbeMakeLabel(Vdbe *p)
int sqliteVdbeMakeLabel(Vdbe *p){
  int i;
  i = p->nLabel++;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( i>=p->nLabelAlloc ){
    int *aNew;
    p->nLabelAlloc = p->nLabelAlloc*2 + 10;
    aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
    if( aNew==0 ){
      sqliteFree(p->aLabel);
    }
    p->aLabel = aNew;
  }
  if( p->aLabel==0 ){
    p->nLabel = 0;
    p->nLabelAlloc = 0;
    return 0;
  }
  p->aLabel[i] = -1;
  return -1-i;
}
vdbeaux.c137
VOIDsqliteVdbeResolveLabel(Vdbe *p, int x)
void sqliteVdbeResolveLabel(Vdbe *p, int x){
  int j;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( x<0 && (-x)<=p->nLabel && p->aOp ){
    if( p->aLabel[-1-x]==p->nOp ) return;
    assert( p->aLabel[-1-x]<0 );
    p->aLabel[-1-x] = p->nOp;
    for(j=0; jnOp; j++){
      if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
    }
  }
}
vdbeaux.c171
INTsqliteVdbeCurrentAddr(Vdbe *p)
int sqliteVdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
  return p->nOp;
}
vdbeaux.c189
INTsqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp)
int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
  int addr;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOp + nOp >= p->nOpAlloc ){
    int oldSize = p->nOpAlloc;
    Op *aNew;
    p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
    aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
    if( aNew==0 ){
      p->nOpAlloc = oldSize;
      return 0;
    }
    p->aOp = aNew;
    memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
  }
  addr = p->nOp;
  if( nOp>0 ){
    int i;
    VdbeOpList const *pIn = aOp;
    for(i=0; ip2;
      VdbeOp *pOut = &p->aOp[i+addr];
      pOut->opcode = pIn->opcode;
      pOut->p1 = pIn->p1;
      pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
      pOut->p3 = pIn->p3;
      pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
#ifndef NDEBUG
      if( sqlite_vdbe_addop_trace ){
        sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
}
vdbeaux.c197
VOIDsqliteVdbeChangeP1(Vdbe *p, int addr, int val)
void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
    p->aOp[addr].p1 = val;
  }
}
vdbeaux.c239
VOIDsqliteVdbeChangeP2(Vdbe *p, int addr, int val)
void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
  assert( val>=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
    p->aOp[addr].p2 = val;
  }
}
vdbeaux.c252
VOIDsqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n)
void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p==0 || p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
    sqliteFree(pOp->p3);
    pOp->p3 = 0;
  }
  if( zP3==0 ){
    pOp->p3 = 0;
    pOp->p3type = P3_NOTUSED;
  }else if( n<0 ){
    pOp->p3 = (char*)zP3;
    pOp->p3type = n;
  }else{
    sqliteSetNString(&pOp->p3, zP3, n, 0);
    pOp->p3type = P3_DYNAMIC;
  }
}
vdbeaux.c264
VOIDsqliteVdbeDequoteP3(Vdbe *p, int addr)
void sqliteVdbeDequoteP3(Vdbe *p, int addr){
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3==0 || pOp->p3[0]==0 ) return;
  if( pOp->p3type==P3_POINTER ) return;
  if( pOp->p3type!=P3_DYNAMIC ){
    pOp->p3 = sqliteStrDup(pOp->p3);
    pOp->p3type = P3_DYNAMIC;
  }
  sqliteDequote(pOp->p3);
}
vdbeaux.c306
VOIDsqliteVdbeCompressSpace(Vdbe *p, int addr)
void sqliteVdbeCompressSpace(Vdbe *p, int addr){
  unsigned char *z;
  int i, j;
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
  pOp = &p->aOp[addr];
  if( pOp->p3type==P3_POINTER ){
    return;
  }
  if( pOp->p3type!=P3_DYNAMIC ){
    pOp->p3 = sqliteStrDup(pOp->p3);
    pOp->p3type = P3_DYNAMIC;
  }
  z = (unsigned char*)pOp->p3;
  if( z==0 ) return;
  i = j = 0;
  while( isspace(z[i]) ){ i++; }
  while( z[i] ){
    if( isspace(z[i]) ){
      z[j++] = ' ';
      while( isspace(z[++i]) ){}
    }else{
      z[j++] = z[i++];
    }
  }
  while( j>0 && isspace(z[j-1]) ){ j--; }
  z[j] = 0;
}
vdbeaux.c333
INTsqliteVdbeFindOp(Vdbe *p, int op, int p2)
int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
  int i;
  assert( p->magic==VDBE_MAGIC_INIT );
  for(i=0; inOp; i++){
    if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
  }
  return 0;
}
vdbeaux.c368
VDBEOP sqliteVdbeGetOp(Vdbe *p, int addr)
VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( addr>=0 && addrnOp );
  return &p->aOp[addr];
}
vdbeaux.c381
CHAR sqlite_set_result_string(sqlite_func *p, const char *zResult, int n)
char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
  assert( !p->isStep );
  if( p->s.flags & MEM_Dyn ){
    sqliteFree(p->s.z);
  }
  if( zResult==0 ){
    p->s.flags = MEM_Null;
    n = 0;
    p->s.z = 0;
    p->s.n = 0;
  }else{
    if( n<0 ) n = strlen(zResult);
    if( ns.zShort, zResult, n);
      p->s.zShort[n] = 0;
      p->s.flags = MEM_Str | MEM_Short;
      p->s.z = p->s.zShort;
    }else{
      p->s.z = sqliteMallocRaw( n+1 );
      if( p->s.z ){
        memcpy(p->s.z, zResult, n);
        p->s.z[n] = 0;
      }
      p->s.flags = MEM_Str | MEM_Dyn;
    }
    p->s.n = n+1;
  }
  return p->s.z;
}
vdbeaux.c390
VOIDsqlite_set_result_int(sqlite_func *p, int iResult)
void sqlite_set_result_int(sqlite_func *p, int iResult){
  assert( !p->isStep );
  if( p->s.flags & MEM_Dyn ){
    sqliteFree(p->s.z);
  }
  p->s.i = iResult;
  p->s.flags = MEM_Int;
}
vdbeaux.c440
VOIDsqlite_set_result_double(sqlite_func *p, double rResult)
void sqlite_set_result_double(sqlite_func *p, double rResult){
  assert( !p->isStep );
  if( p->s.flags & MEM_Dyn ){
    sqliteFree(p->s.z);
  }
  p->s.r = rResult;
  p->s.flags = MEM_Real;
}
vdbeaux.c448
VOIDsqlite_set_result_error(sqlite_func *p, const char *zMsg, int n)
void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
  assert( !p->isStep );
  sqlite_set_result_string(p, zMsg, n);
  p->isError = 1;
}
vdbeaux.c456
VOID sqlite_user_data(sqlite_func *p)
void *sqlite_user_data(sqlite_func *p){
  assert( p && p->pFunc );
  return p->pFunc->pUserData;
}
vdbeaux.c462
VOID sqlite_aggregate_context(sqlite_func *p, int nByte)
void *sqlite_aggregate_context(sqlite_func *p, int nByte){
  assert( p && p->pFunc && p->pFunc->xStep );
  if( p->pAgg==0 ){
    if( nByte<=NBFS ){
      p->pAgg = (void*)p->s.z;
      memset(p->pAgg, 0, nByte);
    }else{
      p->pAgg = sqliteMalloc( nByte );
    }
  }
  return p->pAgg;
}
vdbeaux.c471
INTsqlite_aggregate_count(sqlite_func *p)
int sqlite_aggregate_count(sqlite_func *p){
  assert( p && p->pFunc && p->pFunc->xStep );
  return p->cnt;
}
vdbeaux.c493
VOIDsqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp)
void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP3;
  char zPtr[40];
  if( pOp->p3type==P3_POINTER ){
    sprintf(zPtr, "ptr(%#lx)", (long)pOp->p3);
    zP3 = zPtr;
  }else{
    zP3 = pOp->p3;
  }
  if( pOut==0 ) pOut = stdout;
  fprintf(pOut,"%4d %-12s %4d %4d %s\n",
      pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
  fflush(pOut);
}
vdbeaux.c507
INTsqliteVdbeList( Vdbe *p )
int sqliteVdbeList(
  Vdbe *p                   /* The VDBE */
){
  sqlite *db = p->db;
  int i;
  int rc = SQLITE_OK;
  static char *azColumnNames[] = {
     "addr", "opcode", "p1",  "p2",  "p3", 
     "int",  "text",   "int", "int", "text",
     0
  };

  assert( p->popStack==0 );
  assert( p->explain );
  p->azColName = azColumnNames;
  p->azResColumn = p->zArgv;
  for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort;
  i = p->pc;
  if( i>=p->nOp ){
    p->rc = SQLITE_OK;
    rc = SQLITE_DONE;
  }else if( db->flags & SQLITE_Interrupt ){
    db->flags &= ~SQLITE_Interrupt;
    if( db->magic!=SQLITE_MAGIC_BUSY ){
      p->rc = SQLITE_MISUSE;
    }else{
      p->rc = SQLITE_INTERRUPT;
    }
    rc = SQLITE_ERROR;
    sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0);
  }else{
    sprintf(p->zArgv[0],"%d",i);
    sprintf(p->zArgv[2],"%d", p->aOp[i].p1);
    sprintf(p->zArgv[3],"%d", p->aOp[i].p2);
    if( p->aOp[i].p3type==P3_POINTER ){
      sprintf(p->aStack[4].zShort, "ptr(%#lx)", (long)p->aOp[i].p3);
      p->zArgv[4] = p->aStack[4].zShort;
    }else{
      p->zArgv[4] = p->aOp[i].p3;
    }
    p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode];
    p->pc = i+1;
    p->azResColumn = p->zArgv;
    p->nResColumn = 5;
    p->rc = SQLITE_OK;
    rc = SQLITE_ROW;
  }
  return rc;
}
vdbeaux.c526
VOIDsqliteVdbeMakeReady( Vdbe *p, int nVar, int isExplain )
void sqliteVdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int isExplain                  /* True if the EXPLAIN keywords is present */
){
  int n;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

  /* Add a HALT instruction to the very end of the program.
  */
  if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
    sqliteVdbeAddOp(p, OP_Halt, 0, 0);
  }

  /* No instruction ever pushes more than a single element onto the
  ** stack.  And the stack never grows on successive executions of the
  ** same loop.  So the total number of instructions is an upper bound
  ** on the maximum stack depth required.
  **
  ** Allocation all the stack space we will ever need.
  */
  if( p->aStack==0 ){
    p->nVar = nVar;
    assert( nVar>=0 );
    n = isExplain ? 10 : p->nOp;
    p->aStack = sqliteMalloc(
      n*(sizeof(p->aStack[0]) + 2*sizeof(char*))     /* aStack and zArgv */
        + p->nVar*(sizeof(char*)+sizeof(int)+1)    /* azVar, anVar, abVar */
    );
    p->zArgv = (char**)&p->aStack[n];
    p->azColName = (char**)&p->zArgv[n];
    p->azVar = (char**)&p->azColName[n];
    p->anVar = (int*)&p->azVar[p->nVar];
    p->abVar = (u8*)&p->anVar[p->nVar];
  }

  sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
  p->agg.pSearch = 0;
#ifdef MEMORY_DEBUG
  if( sqliteOsFileExists("vdbe_trace") ){
    p->trace = stdout;
  }
#endif
  p->pTos = &p->aStack[-1];
  p->pc = 0;
  p->rc = SQLITE_OK;
  p->uniqueCnt = 0;
  p->returnDepth = 0;
  p->errorAction = OE_Abort;
  p->undoTransOnError = 0;
  p->popStack =  0;
  p->explain |= isExplain;
  p->magic = VDBE_MAGIC_RUN;
#ifdef VDBE_PROFILE
  {
    int i;
    for(i=0; inOp; i++){
      p->aOp[i].cnt = 0;
      p->aOp[i].cycles = 0;
    }
  }
#endif
}
vdbeaux.c583
VOIDsqliteVdbeSorterReset(Vdbe *p)
void sqliteVdbeSorterReset(Vdbe *p){
  while( p->pSort ){
    Sorter *pSorter = p->pSort;
    p->pSort = pSorter->pNext;
    sqliteFree(pSorter->zKey);
    sqliteFree(pSorter->pData);
    sqliteFree(pSorter);
  }
}
vdbeaux.c656
VOIDsqliteVdbeAggReset(Agg *pAgg)
void sqliteVdbeAggReset(Agg *pAgg){
  int i;
  HashElem *p;
  for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
    AggElem *pElem = sqliteHashData(p);
    assert( pAgg->apFunc!=0 );
    for(i=0; inMem; i++){
      Mem *pMem = &pElem->aMem[i];
      if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
        sqlite_func ctx;
        ctx.pFunc = pAgg->apFunc[i];
        ctx.s.flags = MEM_Null;
        ctx.pAgg = pMem->z;
        ctx.cnt = pMem->i;
        ctx.isStep = 0;
        ctx.isError = 0;
        (*pAgg->apFunc[i]->xFinalize)(&ctx);
        if( pMem->z!=0 && pMem->z!=pMem->zShort ){
          sqliteFree(pMem->z);
        }
        if( ctx.s.flags & MEM_Dyn ){
          sqliteFree(ctx.s.z);
        }
      }else if( pMem->flags & MEM_Dyn ){
        sqliteFree(pMem->z);
      }
    }
    sqliteFree(pElem);
  }
  sqliteHashClear(&pAgg->hash);
  sqliteFree(pAgg->apFunc);
  pAgg->apFunc = 0;
  pAgg->pCurrent = 0;
  pAgg->pSearch = 0;
  pAgg->nMem = 0;
}
vdbeaux.c669
VOIDsqliteVdbeKeylistFree(Keylist *p)
void sqliteVdbeKeylistFree(Keylist *p){
  while( p ){
    Keylist *pNext = p->pNext;
    sqliteFree(p);
    p = pNext;
  }
}
vdbeaux.c715
VOIDsqliteVdbeCleanupCursor(Cursor *pCx)
void sqliteVdbeCleanupCursor(Cursor *pCx){
  if( pCx->pCursor ){
    sqliteBtreeCloseCursor(pCx->pCursor);
  }
  if( pCx->pBt ){
    sqliteBtreeClose(pCx->pBt);
  }
  sqliteFree(pCx->pData);
  memset(pCx, 0, sizeof(Cursor));
}
vdbeaux.c726
STATIC VOIDcloseAllCursors(Vdbe *p)
static void closeAllCursors(Vdbe *p){
  int i;
  for(i=0; inCursor; i++){
    sqliteVdbeCleanupCursor(&p->aCsr[i]);
  }
  sqliteFree(p->aCsr);
  p->aCsr = 0;
  p->nCursor = 0;
}
vdbeaux.c741
STATIC VOIDCleanup(Vdbe *p)
static void Cleanup(Vdbe *p){
  int i;
  if( p->aStack ){
    Mem *pTos = p->pTos;
    while( pTos>=p->aStack ){
      if( pTos->flags & MEM_Dyn ){
        sqliteFree(pTos->z);
      }
      pTos--;
    }
    p->pTos = pTos;
  }
  closeAllCursors(p);
  if( p->aMem ){
    for(i=0; inMem; i++){
      if( p->aMem[i].flags & MEM_Dyn ){
        sqliteFree(p->aMem[i].z);
      }
    }
  }
  sqliteFree(p->aMem);
  p->aMem = 0;
  p->nMem = 0;
  if( p->pList ){
    sqliteVdbeKeylistFree(p->pList);
    p->pList = 0;
  }
  sqliteVdbeSorterReset(p);
  if( p->pFile ){
    if( p->pFile!=stdin ) fclose(p->pFile);
    p->pFile = 0;
  }
  if( p->azField ){
    sqliteFree(p->azField);
    p->azField = 0;
  }
  p->nField = 0;
  if( p->zLine ){
    sqliteFree(p->zLine);
    p->zLine = 0;
  }
  p->nLineAlloc = 0;
  sqliteVdbeAggReset(&p->agg);
  if( p->aSet ){
    for(i=0; inSet; i++){
      sqliteHashClear(&p->aSet[i].hash);
    }
  }
  sqliteFree(p->aSet);
  p->aSet = 0;
  p->nSet = 0;
  if( p->keylistStack ){
    int ii;
    for(ii = 0; ii < p->keylistStackDepth; ii++){
      sqliteVdbeKeylistFree(p->keylistStack[ii]);
    }
    sqliteFree(p->keylistStack);
    p->keylistStackDepth = 0;
    p->keylistStack = 0;
  }
  sqliteFree(p->contextStack);
  p->contextStack = 0;
  sqliteFree(p->zErrMsg);
  p->zErrMsg = 0;
}
vdbeaux.c754
INTsqliteVdbeReset(Vdbe *p, char **pzErrMsg)
int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
  sqlite *db = p->db;
  int i;

  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
    sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
    return SQLITE_MISUSE;
  }
  if( p->zErrMsg ){
    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = p->zErrMsg;
    }else{
      sqliteFree(p->zErrMsg);
    }
    p->zErrMsg = 0;
  }else if( p->rc ){
    sqliteSetString(pzErrMsg, sqlite_error_string(p->rc), (char*)0);
  }
  Cleanup(p);
  if( p->rc!=SQLITE_OK ){
    switch( p->errorAction ){
      case OE_Abort: {
        if( !p->undoTransOnError ){
          for(i=0; inDb; i++){
            if( db->aDb[i].pBt ){
              sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
            }
          }
          break;
        }
        /* Fall through to ROLLBACK */
      }
      case OE_Rollback: {
        sqliteRollbackAll(db);
        db->flags &= ~SQLITE_InTrans;
        db->onError = OE_Default;
        break;
      }
      default: {
        if( p->undoTransOnError ){
          sqliteRollbackAll(db);
          db->flags &= ~SQLITE_InTrans;
          db->onError = OE_Default;
        }
        break;
      }
    }
    sqliteRollbackInternalChanges(db);
  }
  for(i=0; inDb; i++){
    if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
      sqliteBtreeCommitCkpt(db->aDb[i].pBt);
      db->aDb[i].inTrans = 1;
    }
  }
  assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );
#ifdef VDBE_PROFILE
  {
    FILE *out = fopen("vdbe_profile.out", "a");
    if( out ){
      int i;
      fprintf(out, "---- ");
      for(i=0; inOp; i++){
        fprintf(out, "%02x", p->aOp[i].opcode);
      }
      fprintf(out, "\n");
      for(i=0; inOp; i++){
        fprintf(out, "%6d %10lld %8lld ",
           p->aOp[i].cnt,
           p->aOp[i].cycles,
           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
        );
        sqliteVdbePrintOp(out, i, &p->aOp[i]);
      }
      fclose(out);
    }
  }
#endif
  p->magic = VDBE_MAGIC_INIT;
  return p->rc;
}
vdbeaux.c827
INTsqliteVdbeFinalize(Vdbe *p, char **pzErrMsg)
int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
  int rc;
  sqlite *db;

  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
    sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
    return SQLITE_MISUSE;
  }
  db = p->db;
  rc = sqliteVdbeReset(p, pzErrMsg);
  sqliteVdbeDelete(p);
  if( db->want_to_close && db->pVdbe==0 ){
    sqlite_close(db);
  }
  if( rc==SQLITE_SCHEMA ){
    sqliteResetInternalSchema(db, 0);
  }
  return rc;
}
vdbeaux.c916
INTsqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy)
int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
  Vdbe *p = (Vdbe*)pVm;
  if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
    return SQLITE_MISUSE;
  }
  if( i<1 || i>p->nVar ){
    return SQLITE_RANGE;
  }
  i--;
  if( p->abVar[i] ){
    sqliteFree(p->azVar[i]);
  }
  if( zVal==0 ){
    copy = 0;
    len = 0;
  }
  if( len<0 ){
    len = strlen(zVal)+1;
  }
  if( copy ){
    p->azVar[i] = sqliteMalloc( len );
    if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
  }else{
    p->azVar[i] = (char*)zVal;
  }
  p->abVar[i] = copy;
  p->anVar[i] = len;
  return SQLITE_OK;
}
vdbeaux.c940
VOIDsqliteVdbeDelete(Vdbe *p)
void sqliteVdbeDelete(Vdbe *p){
  int i;
  if( p==0 ) return;
  Cleanup(p);
  if( p->pPrev ){
    p->pPrev->pNext = p->pNext;
  }else{
    assert( p->db->pVdbe==p );
    p->db->pVdbe = p->pNext;
  }
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  p->pPrev = p->pNext = 0;
  if( p->nOpAlloc==0 ){
    p->aOp = 0;
    p->nOp = 0;
  }
  for(i=0; inOp; i++){
    if( p->aOp[i].p3type==P3_DYNAMIC ){
      sqliteFree(p->aOp[i].p3);
    }
  }
  for(i=0; inVar; i++){
    if( p->abVar[i] ) sqliteFree(p->azVar[i]);
  }
  sqliteFree(p->aOp);
  sqliteFree(p->aLabel);
  sqliteFree(p->aStack);
  p->magic = VDBE_MAGIC_DEAD;
  sqliteFree(p);
}
vdbeaux.c979
INTsqliteVdbeByteSwap(int x)
int sqliteVdbeByteSwap(int x){
  union {
     char zBuf[sizeof(int)];
     int i;
  } ux;
  ux.zBuf[3] = x&0xff;
  ux.zBuf[2] = (x>>8)&0xff;
  ux.zBuf[1] = (x>>16)&0xff;
  ux.zBuf[0] = (x>>24)&0xff;
  return ux.i;
}
vdbeaux.c1015
INTsqliteVdbeCursorMoveto(Cursor *p)
int sqliteVdbeCursorMoveto(Cursor *p){
  if( p->deferredMoveto ){
    int res;
    extern int sqlite_search_count;
    sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res);
    p->lastRecno = keyToInt(p->movetoTarget);
    p->recnoIsValid = res==0;
    if( res<0 ){
      sqliteBtreeNext(p->pCursor, &res);
    }
    sqlite_search_count++;
    p->deferredMoveto = 0;
  }
  return SQLITE_OK;
}
vdbeaux.c1042
where.c
TypeFunctionSourceLine
STATIC INTexprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr)
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
  int cnt = 0;
  if( pExpr==0 || nSlot<1 ) return 0;
  if( nSlot==1 || pExpr->op!=TK_AND ){
    aSlot[0].p = pExpr;
    return 1;
  }
  if( pExpr->pLeft->op!=TK_AND ){
    aSlot[0].p = pExpr->pLeft;
    cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
  }else{
    cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
    cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
  }
  return cnt;
}

where.c57
STATIC INTgetMask(ExprMaskSet *pMaskSet, int iCursor)
static int getMask(ExprMaskSet *pMaskSet, int iCursor){
  int i;
  for(i=0; in; i++){
    if( pMaskSet->ix[i]==iCursor ) return 1<n && iix) ){
    pMaskSet->n++;
    pMaskSet->ix[i] = iCursor;
    return 1<
where.c88
STATIC INTexprTableUsage(ExprMaskSet *pMaskSet, Expr *p)
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
  unsigned int mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
    mask = getMask(pMaskSet, p->iTable);
    if( mask==0 ) mask = -1;
    return mask;
  }
  if( p->pRight ){
    mask = exprTableUsage(pMaskSet, p->pRight);
  }
  if( p->pLeft ){
    mask |= exprTableUsage(pMaskSet, p->pLeft);
  }
  if( p->pList ){
    int i;
    for(i=0; ipList->nExpr; i++){
      mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
    }
  }
  return mask;
}
where.c110
STATIC INTallowedOp(int op)
static int allowedOp(int op){
  switch( op ){
    case TK_LT:
    case TK_LE:
    case TK_GT:
    case TK_GE:
    case TK_EQ:
    case TK_IN:
      return 1;
    default:
      return 0;
  }
}
where.c145
STATIC VOIDexprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo)
static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
  Expr *pExpr = pInfo->p;
  pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
  pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
  pInfo->indexable = 0;
  pInfo->idxLeft = -1;
  pInfo->idxRight = -1;
  if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
    if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
      pInfo->idxRight = pExpr->pRight->iTable;
      pInfo->indexable = 1;
    }
    if( pExpr->pLeft->op==TK_COLUMN ){
      pInfo->idxLeft = pExpr->pLeft->iTable;
      pInfo->indexable = 1;
    }
  }
}
where.c164
STATIC INDEX findSortingIndex( Table *pTab, int base, ExprList *pOrderBy, Index *pPreferredIdx, int nEqCol, int *pbRev )
static Index *findSortingIndex(
  Table *pTab,            /* The table to be sorted */
  int base,               /* Cursor number for pTab */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  Index *pPreferredIdx,   /* Use this index, if possible and not NULL */
  int nEqCol,             /* Number of index columns used with == constraints */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  int i, j;
  Index *pMatch;
  Index *pIdx;
  int sortOrder;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
  for(i=0; inExpr; i++){
    Expr *p;
    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
      /* Indices can only be used if all ORDER BY terms are either
      ** DESC or ASC.  Indices cannot be used on a mixture. */
      return 0;
    }
    if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
      /* Do not sort by index if there is a COLLATE clause */
      return 0;
    }
    p = pOrderBy->a[i].pExpr;
    if( p->op!=TK_COLUMN || p->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
      return 0;
    }
  }
  
  /* If we get this far, it means the ORDER BY clause consists only of
  ** ascending columns in the left-most table of the FROM clause.  Now
  ** check for a matching index.
  */
  pMatch = 0;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nExpr = pOrderBy->nExpr;
    if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
    for(i=j=0; iaiColumn[i]!=pIdx->aiColumn[i] ) break;
      if( ja[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
    }
    if( ia[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
    }
    if( i+j>=nExpr ){
      pMatch = pIdx;
      if( pIdx==pPreferredIdx ) break;
    }
  }
  if( pMatch && pbRev ){
    *pbRev = sortOrder==SQLITE_SO_DESC;
  }
  return pMatch;
}
where.c190
STATIC VOIDdisableTerm(WhereLevel *pLevel, Expr **ppExpr)
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
  Expr *pExpr = *ppExpr;
  if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
    *ppExpr = 0;
  }
}
where.c274
WHEREINFO sqliteWhereBegin( Parse *pParse, SrcList *pTabList, Expr *pWhere, int pushKey, ExprList **ppOrderBy )
WhereInfo *sqliteWhereBegin(
  Parse *pParse,       /* The parser context */
  SrcList *pTabList,   /* A list of all tables to be scanned */
  Expr *pWhere,        /* The WHERE clause */
  int pushKey,         /* If TRUE, leave the table key on the stack */
  ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
){
  int i;                     /* Loop counter */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  int brk, cont = 0;         /* Addresses used during code generation */
  int nExpr;           /* Number of subexpressions in the WHERE clause */
  int loopMask;        /* One bit set for each outer loop */
  int haveKey;         /* True if KEY is on the stack */
  ExprMaskSet maskSet; /* The expression mask set */
  int iDirectEq[32];   /* Term of the form ROWID==X for the N-th table */
  int iDirectLt[32];   /* Term of the form ROWIDX or ROWID>=X */
  ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */

  /* pushKey is only allowed if there is a single table (as in an INSERT or
  ** UPDATE statement)
  */
  assert( pushKey==0 || pTabList->nSrc==1 );

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.  If the aExpr[]
  ** array fills up, the last entry might point to an expression which
  ** contains additional unfactored AND operators.
  */
  initMaskSet(&maskSet);
  memset(aExpr, 0, sizeof(aExpr));
  nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
  if( nExpr==ARRAYSIZE(aExpr) ){
    sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
       "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
    return 0;
  }
  
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite_malloc_failed ){
    sqliteFree(pWInfo);
    return 0;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
  pWInfo->iBreak = sqliteVdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
    sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.
  */
  for(i=0; itrigStack ){
      int x;
      if( (x = pParse->trigStack->newIdx) >= 0 ){
        int mask = ~getMask(&maskSet, x);
        aExpr[i].prereqRight &= mask;
        aExpr[i].prereqLeft &= mask;
        aExpr[i].prereqAll &= mask;
      }
      if( (x = pParse->trigStack->oldIdx) >= 0 ){
        int mask = ~getMask(&maskSet, x);
        aExpr[i].prereqRight &= mask;
        aExpr[i].prereqLeft &= mask;
        aExpr[i].prereqAll &= mask;
      }
    }
  }

  /* Figure out what index to use (if any) for each nested loop.
  ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
  ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
  ** loop. 
  **
  ** If terms exist that use the ROWID of any table, then set the
  ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
  ** to the index of the term containing the ROWID.  We always prefer
  ** to use a ROWID which can directly access a table rather than an
  ** index which requires reading an index first to get the rowid then
  ** doing a second read of the actual database table.
  **
  ** Actually, if there are more than 32 tables in the join, only the
  ** first 32 tables are candidates for indices.  This is (again) due
  ** to the limit of 32 bits in an integer bitmask.
  */
  loopMask = 0;
  for(i=0; inSrc && ia[i].iCursor;    /* The cursor for this table */
    int mask = getMask(&maskSet, iCur);   /* Cursor mask for this table */
    Table *pTab = pTabList->a[i].pTab;
    Index *pIdx;
    Index *pBestIdx = 0;
    int bestScore = 0;

    /* Check to see if there is an expression that uses only the
    ** ROWID field of this table.  For terms of the form ROWID==expr
    ** set iDirectEq[i] to the index of the term.  For terms of the
    ** form ROWIDexpr or ROWID>=expr set iDirectGt[i].
    **
    ** (Added:) Treat ROWID IN expr like ROWID=expr.
    */
    pWInfo->a[i].iCur = -1;
    iDirectEq[i] = -1;
    iDirectLt[i] = -1;
    iDirectGt[i] = -1;
    for(j=0; jpLeft->iColumn<0
            && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
        switch( aExpr[j].p->op ){
          case TK_IN:
          case TK_EQ: iDirectEq[i] = j; break;
          case TK_LE:
          case TK_LT: iDirectLt[i] = j; break;
          case TK_GE:
          case TK_GT: iDirectGt[i] = j;  break;
        }
      }
      if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
            && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
        switch( aExpr[j].p->op ){
          case TK_EQ: iDirectEq[i] = j;  break;
          case TK_LE:
          case TK_LT: iDirectGt[i] = j;  break;
          case TK_GE:
          case TK_GT: iDirectLt[i] = j;  break;
        }
      }
    }
    if( iDirectEq[i]>=0 ){
      loopMask |= mask;
      pWInfo->a[i].pIdx = 0;
      continue;
    }

    /* Do a search for usable indices.  Leave pBestIdx pointing to
    ** the "best" index.  pBestIdx is left set to NULL if no indices
    ** are usable.
    **
    ** The best index is determined as follows.  For each of the
    ** left-most terms that is fixed by an equality operator, add
    ** 8 to the score.  The right-most term of the index may be
    ** constrained by an inequality.  Add 1 if for an "x<..." constraint
    ** and add 2 for an "x>..." constraint.  Chose the index that
    ** gives the best score.
    **
    ** This scoring system is designed so that the score can later be
    ** used to determine how the index is used.  If the score&7 is 0
    ** then all constraints are equalities.  If score&1 is not 0 then
    ** there is an inequality used as a termination key.  (ex: "x<...")
    ** If score&2 is not 0 then there is an inequality used as the
    ** start key.  (ex: "x>...").  A score or 4 is the special case
    ** of an IN operator constraint.  (ex:  "x IN ...").
    **
    ** The IN operator (as in " IN (...)") is treated the same as
    ** an equality comparison except that it can only be used on the
    ** left-most column of an index and other terms of the WHERE clause
    ** cannot be used in conjunction with the IN operator to help satisfy
    ** other columns of the index.
    */
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int eqMask = 0;  /* Index columns covered by an x=... term */
      int ltMask = 0;  /* Index columns covered by an x<... term */
      int gtMask = 0;  /* Index columns covered by an x>... term */
      int inMask = 0;  /* Index columns covered by an x IN .. term */
      int nEq, m, score;

      if( pIdx->nColumn>32 ) continue;  /* Ignore indices too many columns */
      for(j=0; jpLeft->iColumn;
          int k;
          for(k=0; knColumn; k++){
            if( pIdx->aiColumn[k]==iColumn ){
              switch( aExpr[j].p->op ){
                case TK_IN: {
                  if( k==0 ) inMask |= 1;
                  break;
                }
                case TK_EQ: {
                  eqMask |= 1<pRight->iColumn;
          int k;
          for(k=0; knColumn; k++){
            if( pIdx->aiColumn[k]==iColumn ){
              switch( aExpr[j].p->op ){
                case TK_EQ: {
                  eqMask |= 1<nColumn; nEq++){
        m = (1<<(nEq+1))-1;
        if( (m & eqMask)!=m ) break;
      }
      score = nEq*8;   /* Base score is 8 times number of == constraints */
      m = 1< constraint */
      if( score==0 && inMask ) score = 4;  /* Default score for IN constraint */
      if( score>bestScore ){
        pBestIdx = pIdx;
        bestScore = score;
      }
    }
    pWInfo->a[i].pIdx = pBestIdx;
    pWInfo->a[i].score = bestScore;
    pWInfo->a[i].bRev = 0;
    loopMask |= mask;
    if( pBestIdx ){
      pWInfo->a[i].iCur = pParse->nTab++;
      pWInfo->peakNTab = pParse->nTab;
    }
  }

  /* Check to see if the ORDER BY clause is or can be satisfied by the
  ** use of an index on the first table.
  */
  if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
     Index *pSortIdx;
     Index *pIdx;
     Table *pTab;
     int bRev = 0;

     pTab = pTabList->a[0].pTab;
     pIdx = pWInfo->a[0].pIdx;
     if( pIdx && pWInfo->a[0].score==4 ){
       /* If there is already an IN index on the left-most table,
       ** it will not give the correct sort order.
       ** So, pretend that no suitable index is found.
       */
       pSortIdx = 0;
     }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
       /* If the left-most column is accessed using its ROWID, then do
       ** not try to sort by index.
       */
       pSortIdx = 0;
     }else{
       int nEqCol = (pWInfo->a[0].score+4)/8;
       pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, 
                                   *ppOrderBy, pIdx, nEqCol, &bRev);
     }
     if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
       if( pIdx==0 ){
         pWInfo->a[0].pIdx = pSortIdx;
         pWInfo->a[0].iCur = pParse->nTab++;
         pWInfo->peakNTab = pParse->nTab;
       }
       pWInfo->a[0].bRev = bRev;
       *ppOrderBy = 0;
     }
  }

  /* Open all tables in the pTabList and all indices used by those tables.
  */
  for(i=0; inSrc; i++){
    Table *pTab;
    Index *pIx;

    pTab = pTabList->a[i].pTab;
    if( pTab->isTransient || pTab->pSelect ) continue;
    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
                     pTab->zName, P3_STATIC);
    sqliteCodeVerifySchema(pParse, pTab->iDb);
    if( (pIx = pWInfo->a[i].pIdx)!=0 ){
      sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
      sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
    }
  }

  /* Generate the code to do the search
  */
  loopMask = 0;
  for(i=0; inSrc; i++){
    int j, k;
    int iCur = pTabList->a[i].iCursor;
    Index *pIdx;
    WhereLevel *pLevel = &pWInfo->a[i];

    /* If this is the right table of a LEFT OUTER JOIN, allocate and
    ** initialize a memory cell that records if this table matches any
    ** row of the left table of the join.
    */
    if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
      if( !pParse->nMem ) pParse->nMem++;
      pLevel->iLeftJoin = pParse->nMem++;
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
    }

    pIdx = pLevel->pIdx;
    pLevel->inOp = OP_Noop;
    if( i=0 ){
      /* Case 1:  We can directly reference a single row using an
      **          equality comparison against the ROWID field.  Or
      **          we reference multiple rows using a "rowid IN (...)"
      **          construct.
      */
      k = iDirectEq[i];
      assert( kbrk = sqliteVdbeMakeLabel(v);
      if( aExpr[k].idxLeft==iCur ){
        Expr *pX = aExpr[k].p;
        if( pX->op!=TK_IN ){
          sqliteExprCode(pParse, aExpr[k].p->pRight);
        }else if( pX->pList ){
          sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
          pLevel->inOp = OP_SetNext;
          pLevel->inP1 = pX->iTable;
          pLevel->inP2 = sqliteVdbeCurrentAddr(v);
        }else{
          assert( pX->pSelect );
          sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
          sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
          pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
          pLevel->inOp = OP_Next;
          pLevel->inP1 = pX->iTable;
        }
      }else{
        sqliteExprCode(pParse, aExpr[k].p->pLeft);
      }
      disableTerm(pLevel, &aExpr[k].p);
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
      haveKey = 0;
      sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
      pLevel->op = OP_Noop;
    }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
      /* Case 2:  There is an index and all terms of the WHERE clause that
      **          refer to the index use the "==" or "IN" operators.
      */
      int start;
      int testOp;
      int nColumn = (pLevel->score+4)/8;
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      for(j=0; jpLeft->iColumn==pIdx->aiColumn[j]
          ){
            if( pX->op==TK_EQ ){
              sqliteExprCode(pParse, pX->pRight);
              disableTerm(pLevel, &aExpr[k].p);
              break;
            }
            if( pX->op==TK_IN && nColumn==1 ){
              if( pX->pList ){
                sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
                pLevel->inOp = OP_SetNext;
                pLevel->inP1 = pX->iTable;
                pLevel->inP2 = sqliteVdbeCurrentAddr(v);
              }else{
                assert( pX->pSelect );
                sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
                sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
                pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
                pLevel->inOp = OP_Next;
                pLevel->inP1 = pX->iTable;
              }
              disableTerm(pLevel, &aExpr[k].p);
              break;
            }
          }
          if( aExpr[k].idxRight==iCur
             && aExpr[k].p->op==TK_EQ
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, aExpr[k].p->pLeft);
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
      }
      pLevel->iMem = pParse->nMem++;
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, brk);
      sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
      sqliteAddIdxKeyType(v, pIdx);
      if( nColumn==pIdx->nColumn || pLevel->bRev ){
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
        testOp = OP_IdxGT;
      }else{
        sqliteVdbeAddOp(v, OP_Dup, 0, 0);
        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        testOp = OP_IdxGE;
      }
      if( pLevel->bRev ){
        /* Scan in reverse order */
        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
        pLevel->op = OP_Prev;
      }else{
        /* Scan in the forward order */
        sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
        pLevel->op = OP_Next;
      }
      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
      sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
      if( i==pTabList->nSrc-1 && pushKey ){
        haveKey = 1;
      }else{
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
        haveKey = 0;
      }
      pLevel->p1 = pLevel->iCur;
      pLevel->p2 = start;
    }else if( i=0 || iDirectGt[i]>=0) ){
      /* Case 3:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;

      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      if( iDirectGt[i]>=0 ){
        k = iDirectGt[i];
        assert( kpRight);
        }else{
          sqliteExprCode(pParse, aExpr[k].p->pLeft);
        }
        sqliteVdbeAddOp(v, OP_ForceInt,
          aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
        disableTerm(pLevel, &aExpr[k].p);
      }else{
        sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
      }
      if( iDirectLt[i]>=0 ){
        k = iDirectLt[i];
        assert( kpRight);
        }else{
          sqliteExprCode(pParse, aExpr[k].p->pLeft);
        }
        /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
        pLevel->iMem = pParse->nMem++;
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
          testOp = OP_Ge;
        }else{
          testOp = OP_Gt;
        }
        disableTerm(pLevel, &aExpr[k].p);
      }
      start = sqliteVdbeCurrentAddr(v);
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, testOp, 0, brk);
      }
      haveKey = 0;
    }else if( pIdx==0 ){
      /* Case 4:  There is no usable index.  We must do a complete
      **          scan of the entire database table.
      */
      int start;

      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
      start = sqliteVdbeCurrentAddr(v);
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      haveKey = 0;
    }else{
      /* Case 5: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must
      **         use the "==" operator.
      **
      **         This case is also used when there are no WHERE clause
      **         constraints but an index is selected anyway, in order
      **         to force the output order to conform to an ORDER BY.
      */
      int score = pLevel->score;
      int nEqColumn = score/8;
      int start;
      int leFlag, geFlag;
      int testOp;

      /* Evaluate the equality constraints
      */
      for(j=0; jop==TK_EQ
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, aExpr[k].p->pRight);
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
          if( aExpr[k].idxRight==iCur
             && aExpr[k].p->op==TK_EQ
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, aExpr[k].p->pLeft);
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
      }

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; jcont = sqliteVdbeMakeLabel(v);
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);

      /* Generate the termination key.  This is the key value that
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( (score & 1)!=0 ){
        for(k=0; kop==TK_LT || pExpr->op==TK_LE)
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pRight);
            leFlag = pExpr->op==TK_LE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
          if( aExpr[k].idxRight==iCur
             && (pExpr->op==TK_GT || pExpr->op==TK_GE)
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && pExpr->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pLeft);
            leFlag = pExpr->op==TK_GE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
        testOp = OP_IdxGE;
      }else{
        testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
        leFlag = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEqColumn + (score & 1);
        pLevel->iMem = pParse->nMem++;
        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
        sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, brk);
        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
        sqliteAddIdxKeyType(v, pIdx);
        if( leFlag ){
          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        }
        if( pLevel->bRev ){
          sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
        }else{
          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( pLevel->bRev ){
        sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( (score & 2)!=0 ){
        for(k=0; kop==TK_GT || pExpr->op==TK_GE)
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pRight);
            geFlag = pExpr->op==TK_GE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
          if( aExpr[k].idxRight==iCur
             && (pExpr->op==TK_LT || pExpr->op==TK_LE)
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && pExpr->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pLeft);
            geFlag = pExpr->op==TK_LE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
      }else{
        geFlag = 1;
      }
      if( nEqColumn>0 || (score&2)!=0 ){
        int nCol = nEqColumn + ((score&2)!=0);
        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
        sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, brk);
        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
        sqliteAddIdxKeyType(v, pIdx);
        if( !geFlag ){
          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        }
        if( pLevel->bRev ){
          pLevel->iMem = pParse->nMem++;
          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
        }
      }else if( pLevel->bRev ){
        testOp = OP_Noop;
      }else{
        sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqliteVdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
      }
      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
      sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
      if( i==pTabList->nSrc-1 && pushKey ){
        haveKey = 1;
      }else{
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
        haveKey = 0;
      }

      /* Record the instruction used to terminate the loop.
      */
      pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
      pLevel->p1 = pLevel->iCur;
      pLevel->p2 = start;
    }
    loopMask |= getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(j=0; jiLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
        continue;
      }
      if( haveKey ){
        haveKey = 0;
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
      }
      sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
      aExpr[j].p = 0;
    }
    brk = cont;

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqliteVdbeCurrentAddr(v);
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
      for(j=0; jiContinue = cont;
  if( pushKey && !haveKey ){
    sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
  }
  freeMaskSet(&maskSet);
  return pWInfo;
}
where.c303
VOIDsqliteWhereEnd(WhereInfo *pWInfo)
void sqliteWhereEnd(WhereInfo *pWInfo){
  Vdbe *v = pWInfo->pParse->pVdbe;
  int i;
  WhereLevel *pLevel;
  SrcList *pTabList = pWInfo->pTabList;

  for(i=pTabList->nSrc-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    sqliteVdbeResolveLabel(v, pLevel->cont);
    if( pLevel->op!=OP_Noop ){
      sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
    }
    sqliteVdbeResolveLabel(v, pLevel->brk);
    if( pLevel->inOp!=OP_Noop ){
      sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
    }
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
      sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
      sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
      if( pLevel->iCur>=0 ){
        sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
      }
      sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
    }
  }
  sqliteVdbeResolveLabel(v, pWInfo->iBreak);
  for(i=0; inSrc; i++){
    Table *pTab = pTabList->a[i].pTab;
    assert( pTab!=0 );
    if( pTab->isTransient || pTab->pSelect ) continue;
    pLevel = &pWInfo->a[i];
    sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
    if( pLevel->pIdx!=0 ){
      sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
    }
  }
#if 0  /* Never reuse a cursor */
  if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
    pWInfo->pParse->nTab = pWInfo->savedNTab;
  }
#endif
  sqliteFree(pWInfo);
  return;
}
where.c1186